Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
x ^ { 3 } y ^ { 4 } z ^ { 4 } , x ^ { 2 } y z ^ { 3 } , x ^ { 2 } y ^ { 2 } z ^ { 2 }
Least Common Multiple
x^{3}\left(yz\right)^{4}
View solution steps
Solution Steps
x ^ { 3 } y ^ { 4 } z ^ { 4 } , x ^ { 2 } y z ^ { 3 } , x ^ { 2 } y ^ { 2 } z ^ { 2 }
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
x^{3}y^{4}z^{4}
Evaluate
x^{3}\left(yz\right)^{4},yx^{2}z^{3},\left(xyz\right)^{2}
Quiz
List
5 problems similar to:
x ^ { 3 } y ^ { 4 } z ^ { 4 } , x ^ { 2 } y z ^ { 3 } , x ^ { 2 } y ^ { 2 } z ^ { 2 }
Similar Problems from Web Search
How do you evaluate \displaystyle{\left(-{3}{x}^{{{3}}}{y}^{{{4}}}{z}^{{{2}}}\right)}{\left({x}{y}{z}^{{{2}}}\right)}{\left(-{x}^{{{5}}}{y}^{{{2}}}{z}\right)} ?
https://socratic.org/questions/how-do-you-evaluate-3x-3-y-4-z-2-x-y-z-2-x-5-y-2-z
See a solution process below: Explanation: First, rearrange the expression as: \displaystyle{\left(-{3}{x}^{{3}}{y}^{{4}}{z}^{{2}}\right)}{\left({x}{y}{z}^{{2}}\right)}{\left(-{x}^{{5}}{y}^{{2}}{z}\right)}\Rightarrow ...
7x^6yz^3+5x^2y^2z+12xy^5z^2
https://www.tiger-algebra.com/drill/7x~6yz~3_5x~2y~2z_12xy~5z~2/
7x6yz3+5x2y2z+12xy5z2 Final result : xyz • (7x5z2 + 5xy + 12y4z) Step by step solution : Step 1 :Equation at the end of step 1 : ((((7•(x6))•y)•(z3))+(((5•(x2))•(y2))•z))+((22•3xy5)•z2) Step 2 ...
(3x^2y-6y^2+4x)-(2xy^2+x-7x^2y)
https://www.tiger-algebra.com/drill/(3x~2y-6y~2_4x)-(2xy~2_x-7x~2y)/
(3x2y-6y2+4x)-(2xy2+x-7x2y) Final result : 10x2y - 2xy2 + 3x - 6y2 Step by step solution : Step 1 :Equation at the end of step 1 : ((((3•(x2))•y)-(6•(y2)))+4x)-(((2x•(y2))+x)-(7x2•y)) Step 2 ...
-18x^3y^2+12x^4y^3-24x^2y
https://www.tiger-algebra.com/drill/-18x~3y~2_12x~4y~3-24x~2y/
-18x3y2+12x4y3-24x2y Final result : 6x2y • (2x2y2 - 3xy - 4) Step by step solution : Step 1 :Equation at the end of step 1 : ((0-((18•(x3))•(y2)))+((12•(x4))•(y3)))-((23•3x2)•y) Step 2 ...
What are separate equation for x^2 -6xy + 5y^2 +10x -14y +9 = 0 ? How to find it?
https://www.quora.com/What-are-separate-equation-for-x-2-6xy-+-5y-2-+10x-14y-+9-0-How-to-find-it
x^2–6xy+5y^2+10x-14y+9=0 Factors of x^2–6xy+5y^2=(x-5y)(x-y). Let (x-5y+c1)=0 and (x-y+c2)=0 are the seperate equation. (x-5y+c1)(x-y+c2)=0 will be combine equation. ...
How do you factor \displaystyle{8}{x}^{{3}}{y}^{{2}}-{12}{x}^{{2}}{y}^{{3}}+{20}{x}^{{2}}{y}^{{2}} ?
https://socratic.org/questions/how-do-you-factor-8x-3y-2-12x-2y-3-20x-2y-2
Tessalsifi Jun 7, 2015 We see all the numbers can be divided by \displaystyle{4} so we know we can factor by \displaystyle{4} : \displaystyle={4}{\left({2}{x}^{{3}}{y}^{{2}}-{3}{x}^{{2}}{y}^{{3}}+{5}{x}^{{2}}{y}^{{2}}\right)} ...
More Items
Share
Copy
Copied to clipboard
x^{3}y^{4}z^{4}
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top