Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-7x^{2}+5=x^{3}-x+3x^{2}-2
Use the distributive property to multiply x by x^{2}-1.
x^{3}-7x^{2}+5-x^{3}=-x+3x^{2}-2
Subtract x^{3} from both sides.
-7x^{2}+5=-x+3x^{2}-2
Combine x^{3} and -x^{3} to get 0.
-7x^{2}+5+x=3x^{2}-2
Add x to both sides.
-7x^{2}+5+x-3x^{2}=-2
Subtract 3x^{2} from both sides.
-10x^{2}+5+x=-2
Combine -7x^{2} and -3x^{2} to get -10x^{2}.
-10x^{2}+5+x+2=0
Add 2 to both sides.
-10x^{2}+7+x=0
Add 5 and 2 to get 7.
-10x^{2}+x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-10\right)\times 7}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 1 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-10\right)\times 7}}{2\left(-10\right)}
Square 1.
x=\frac{-1±\sqrt{1+40\times 7}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-1±\sqrt{1+280}}{2\left(-10\right)}
Multiply 40 times 7.
x=\frac{-1±\sqrt{281}}{2\left(-10\right)}
Add 1 to 280.
x=\frac{-1±\sqrt{281}}{-20}
Multiply 2 times -10.
x=\frac{\sqrt{281}-1}{-20}
Now solve the equation x=\frac{-1±\sqrt{281}}{-20} when ± is plus. Add -1 to \sqrt{281}.
x=\frac{1-\sqrt{281}}{20}
Divide -1+\sqrt{281} by -20.
x=\frac{-\sqrt{281}-1}{-20}
Now solve the equation x=\frac{-1±\sqrt{281}}{-20} when ± is minus. Subtract \sqrt{281} from -1.
x=\frac{\sqrt{281}+1}{20}
Divide -1-\sqrt{281} by -20.
x=\frac{1-\sqrt{281}}{20} x=\frac{\sqrt{281}+1}{20}
The equation is now solved.
x^{3}-7x^{2}+5=x^{3}-x+3x^{2}-2
Use the distributive property to multiply x by x^{2}-1.
x^{3}-7x^{2}+5-x^{3}=-x+3x^{2}-2
Subtract x^{3} from both sides.
-7x^{2}+5=-x+3x^{2}-2
Combine x^{3} and -x^{3} to get 0.
-7x^{2}+5+x=3x^{2}-2
Add x to both sides.
-7x^{2}+5+x-3x^{2}=-2
Subtract 3x^{2} from both sides.
-10x^{2}+5+x=-2
Combine -7x^{2} and -3x^{2} to get -10x^{2}.
-10x^{2}+x=-2-5
Subtract 5 from both sides.
-10x^{2}+x=-7
Subtract 5 from -2 to get -7.
\frac{-10x^{2}+x}{-10}=-\frac{7}{-10}
Divide both sides by -10.
x^{2}+\frac{1}{-10}x=-\frac{7}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{1}{10}x=-\frac{7}{-10}
Divide 1 by -10.
x^{2}-\frac{1}{10}x=\frac{7}{10}
Divide -7 by -10.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=\frac{7}{10}+\left(-\frac{1}{20}\right)^{2}
Divide -\frac{1}{10}, the coefficient of the x term, by 2 to get -\frac{1}{20}. Then add the square of -\frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{7}{10}+\frac{1}{400}
Square -\frac{1}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{281}{400}
Add \frac{7}{10} to \frac{1}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{20}\right)^{2}=\frac{281}{400}
Factor x^{2}-\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{\frac{281}{400}}
Take the square root of both sides of the equation.
x-\frac{1}{20}=\frac{\sqrt{281}}{20} x-\frac{1}{20}=-\frac{\sqrt{281}}{20}
Simplify.
x=\frac{\sqrt{281}+1}{20} x=\frac{1-\sqrt{281}}{20}
Add \frac{1}{20} to both sides of the equation.