Solve for g
g=-\frac{\left(x-1\right)\left(-x^{2}+x-2\right)}{x\left(x-2\right)}
x\neq 2\text{ and }x\neq 0
Graph
Share
Copied to clipboard
x^{3}-2x^{2}+x+2=gx^{2}-2gx-2x+4
Use the distributive property to multiply gx by x-2.
gx^{2}-2gx-2x+4=x^{3}-2x^{2}+x+2
Swap sides so that all variable terms are on the left hand side.
gx^{2}-2gx+4=x^{3}-2x^{2}+x+2+2x
Add 2x to both sides.
gx^{2}-2gx+4=x^{3}-2x^{2}+3x+2
Combine x and 2x to get 3x.
gx^{2}-2gx=x^{3}-2x^{2}+3x+2-4
Subtract 4 from both sides.
gx^{2}-2gx=x^{3}-2x^{2}+3x-2
Subtract 4 from 2 to get -2.
\left(x^{2}-2x\right)g=x^{3}-2x^{2}+3x-2
Combine all terms containing g.
\frac{\left(x^{2}-2x\right)g}{x^{2}-2x}=\frac{\left(x-1\right)\left(x^{2}-x+2\right)}{x^{2}-2x}
Divide both sides by x^{2}-2x.
g=\frac{\left(x-1\right)\left(x^{2}-x+2\right)}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
g=\frac{\left(x-1\right)\left(x^{2}-x+2\right)}{x\left(x-2\right)}
Divide \left(-1+x\right)\left(2-x+x^{2}\right) by x^{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}