Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{x^{3}+y^{2}-b}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&b=y^{2}\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{x^{3}+y^{2}-b}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&x=0\text{ and }b=y^{2}\end{matrix}\right.
Solve for b
b=x^{3}-ax+y^{2}
Graph
Share
Copied to clipboard
ax+b-y^{2}=x^{3}
Swap sides so that all variable terms are on the left hand side.
ax-y^{2}=x^{3}-b
Subtract b from both sides.
ax=x^{3}-b+y^{2}
Add y^{2} to both sides.
xa=x^{3}+y^{2}-b
The equation is in standard form.
\frac{xa}{x}=\frac{x^{3}+y^{2}-b}{x}
Divide both sides by x.
a=\frac{x^{3}+y^{2}-b}{x}
Dividing by x undoes the multiplication by x.
ax+b-y^{2}=x^{3}
Swap sides so that all variable terms are on the left hand side.
ax-y^{2}=x^{3}-b
Subtract b from both sides.
ax=x^{3}-b+y^{2}
Add y^{2} to both sides.
xa=x^{3}+y^{2}-b
The equation is in standard form.
\frac{xa}{x}=\frac{x^{3}+y^{2}-b}{x}
Divide both sides by x.
a=\frac{x^{3}+y^{2}-b}{x}
Dividing by x undoes the multiplication by x.
ax+b-y^{2}=x^{3}
Swap sides so that all variable terms are on the left hand side.
b-y^{2}=x^{3}-ax
Subtract ax from both sides.
b=x^{3}-ax+y^{2}
Add y^{2} to both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}