Solve for x
x=-\frac{\sqrt[3]{2}\left(1+\sqrt{3}i\right)\left(2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)\right)^{-\frac{1}{3}}\left(2^{\frac{2}{3}}\left(-1+\sqrt{3}i\right)\sqrt[3]{2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)}e^{y}+4e^{2y}+\sqrt[3]{2}\left(-\sqrt{3}i-1\right)\left(2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)\right)^{\frac{2}{3}}\right)}{24}
x=\frac{2^{\frac{2}{3}}\left(2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)\right)^{-\frac{1}{3}}\left(\sqrt[3]{2\left(2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)\right)}e^{y}+2^{\frac{2}{3}}e^{2y}+\left(2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)\right)^{\frac{2}{3}}\right)}{6}
x=-\frac{\sqrt[3]{2}\left(-\sqrt{3}i+1\right)\left(2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)\right)^{-\frac{1}{3}}\left(2^{\frac{2}{3}}\left(-\sqrt{3}i-1\right)\sqrt[3]{2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)}e^{y}+4e^{2y}+\sqrt[3]{2}\left(-1+\sqrt{3}i\right)\left(2e^{3y}+3\sqrt{3\ln(y)\left(-4e^{3y}+27\ln(y)\right)}-27\ln(y)\right)^{\frac{2}{3}}\right)}{24}\text{, }y\neq 0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}