Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-4x=-4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8x^{2}-4x-\left(-4\right)=-4-\left(-4\right)
Add 4 to both sides of the equation.
8x^{2}-4x-\left(-4\right)=0
Subtracting -4 from itself leaves 0.
8x^{2}-4x+4=0
Subtract -4 from 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 8\times 4}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 8\times 4}}{2\times 8}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-32\times 4}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-4\right)±\sqrt{16-128}}{2\times 8}
Multiply -32 times 4.
x=\frac{-\left(-4\right)±\sqrt{-112}}{2\times 8}
Add 16 to -128.
x=\frac{-\left(-4\right)±4\sqrt{7}i}{2\times 8}
Take the square root of -112.
x=\frac{4±4\sqrt{7}i}{2\times 8}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{7}i}{16}
Multiply 2 times 8.
x=\frac{4+4\sqrt{7}i}{16}
Now solve the equation x=\frac{4±4\sqrt{7}i}{16} when ± is plus. Add 4 to 4i\sqrt{7}.
x=\frac{1+\sqrt{7}i}{4}
Divide 4+4i\sqrt{7} by 16.
x=\frac{-4\sqrt{7}i+4}{16}
Now solve the equation x=\frac{4±4\sqrt{7}i}{16} when ± is minus. Subtract 4i\sqrt{7} from 4.
x=\frac{-\sqrt{7}i+1}{4}
Divide 4-4i\sqrt{7} by 16.
x=\frac{1+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+1}{4}
The equation is now solved.
8x^{2}-4x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}-4x}{8}=-\frac{4}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{4}{8}\right)x=-\frac{4}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{1}{2}x=-\frac{4}{8}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{2}x=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{1}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{7}{16}
Add -\frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{7}i}{4} x-\frac{1}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{1+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+1}{4}
Add \frac{1}{4} to both sides of the equation.