Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x-6=8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-x-6-8=8-8
Subtract 8 from both sides of the equation.
x^{2}-x-6-8=0
Subtracting 8 from itself leaves 0.
x^{2}-x-14=0
Subtract 8 from -6.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+56}}{2}
Multiply -4 times -14.
x=\frac{-\left(-1\right)±\sqrt{57}}{2}
Add 1 to 56.
x=\frac{1±\sqrt{57}}{2}
The opposite of -1 is 1.
x=\frac{\sqrt{57}+1}{2}
Now solve the equation x=\frac{1±\sqrt{57}}{2} when ± is plus. Add 1 to \sqrt{57}.
x=\frac{1-\sqrt{57}}{2}
Now solve the equation x=\frac{1±\sqrt{57}}{2} when ± is minus. Subtract \sqrt{57} from 1.
x=\frac{\sqrt{57}+1}{2} x=\frac{1-\sqrt{57}}{2}
The equation is now solved.
x^{2}-x-6=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-x-6-\left(-6\right)=8-\left(-6\right)
Add 6 to both sides of the equation.
x^{2}-x=8-\left(-6\right)
Subtracting -6 from itself leaves 0.
x^{2}-x=14
Subtract -6 from 8.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=14+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=14+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{57}{4}
Add 14 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{57}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{57}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{57}}{2} x-\frac{1}{2}=-\frac{\sqrt{57}}{2}
Simplify.
x=\frac{\sqrt{57}+1}{2} x=\frac{1-\sqrt{57}}{2}
Add \frac{1}{2} to both sides of the equation.