Factor
\left(x-1\right)\left(x+1\right)x^{2}\left(x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)\left(x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)\left(x^{22}-x^{11}+1\right)\left(x^{22}+x^{11}+1\right)\left(-x^{66}+x^{33}-1\right)\left(x^{66}+x^{33}+1\right)
Evaluate
x^{2}\left(1-x^{22}\right)\left(\left(x^{22}+1\right)^{2}-x^{22}\right)\left(\left(x^{66}+1\right)^{2}-x^{66}\right)
Graph
Share
Copied to clipboard
x^{2}\left(1-x^{198}\right)
Factor out x^{2}.
\left(1+x^{99}\right)\left(1-x^{99}\right)
Consider 1-x^{198}. Rewrite 1-x^{198} as 1^{2}-\left(-x^{99}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{99}+1\right)\left(-x^{99}+1\right)
Reorder the terms.
\left(x^{33}+1\right)\left(x^{66}-x^{33}+1\right)
Consider x^{99}+1. Rewrite x^{99}+1 as \left(x^{33}\right)^{3}+1^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{11}+1\right)\left(x^{22}-x^{11}+1\right)
Consider x^{33}+1. Rewrite x^{33}+1 as \left(x^{11}\right)^{3}+1^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x+1\right)\left(x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)
Consider x^{11}+1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient 1. One such root is -1. Factor the polynomial by dividing it by x+1.
\left(x^{33}-1\right)\left(-x^{66}-x^{33}-1\right)
Consider -x^{99}+1. Find one factor of the form kx^{m}+n, where kx^{m} divides the monomial with the highest power -x^{99} and n divides the constant factor 1. One such factor is x^{33}-1. Factor the polynomial by dividing it by this factor.
\left(x^{11}-1\right)\left(x^{22}+x^{11}+1\right)
Consider x^{33}-1. Rewrite x^{33}-1 as \left(x^{11}\right)^{3}-1^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x-1\right)\left(x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)
Consider x^{11}-1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 1. One such root is 1. Factor the polynomial by dividing it by x-1.
x^{2}\left(x+1\right)\left(x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)\left(x^{22}-x^{11}+1\right)\left(x^{66}-x^{33}+1\right)\left(x-1\right)\left(x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)\left(x^{22}+x^{11}+1\right)\left(-x^{66}-x^{33}-1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -x^{66}-x^{33}-1,x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1,x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1,x^{22}-x^{11}+1,x^{22}+x^{11}+1,x^{66}-x^{33}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}