Solve for m
\left\{\begin{matrix}m=x+\frac{r}{x}-1\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&r=0\text{ and }x=0\end{matrix}\right.
Solve for r
r=x\left(1+m-x\right)
Share
Copied to clipboard
mx-r=x^{2}-x
Swap sides so that all variable terms are on the left hand side.
mx=x^{2}-x+r
Add r to both sides.
xm=x^{2}-x+r
The equation is in standard form.
\frac{xm}{x}=\frac{x^{2}-x+r}{x}
Divide both sides by x.
m=\frac{x^{2}-x+r}{x}
Dividing by x undoes the multiplication by x.
m=x+\frac{r}{x}-1
Divide x^{2}-x+r by x.
mx-r=x^{2}-x
Swap sides so that all variable terms are on the left hand side.
-r=x^{2}-x-mx
Subtract mx from both sides.
-r=x^{2}-mx-x
The equation is in standard form.
\frac{-r}{-1}=\frac{x\left(x-m-1\right)}{-1}
Divide both sides by -1.
r=\frac{x\left(x-m-1\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
r=x+mx-x^{2}
Divide x\left(-1+x-m\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}