Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-9x=2-3\times 2x
Multiply both sides of the equation by 9, the least common multiple of 9,3.
9x^{2}-9x=2-6x
Multiply -3 and 2 to get -6.
9x^{2}-9x-2=-6x
Subtract 2 from both sides.
9x^{2}-9x-2+6x=0
Add 6x to both sides.
9x^{2}-3x-2=0
Combine -9x and 6x to get -3x.
a+b=-3 ab=9\left(-2\right)=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-18 2,-9 3,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -18.
1-18=-17 2-9=-7 3-6=-3
Calculate the sum for each pair.
a=-6 b=3
The solution is the pair that gives sum -3.
\left(9x^{2}-6x\right)+\left(3x-2\right)
Rewrite 9x^{2}-3x-2 as \left(9x^{2}-6x\right)+\left(3x-2\right).
3x\left(3x-2\right)+3x-2
Factor out 3x in 9x^{2}-6x.
\left(3x-2\right)\left(3x+1\right)
Factor out common term 3x-2 by using distributive property.
x=\frac{2}{3} x=-\frac{1}{3}
To find equation solutions, solve 3x-2=0 and 3x+1=0.
9x^{2}-9x=2-3\times 2x
Multiply both sides of the equation by 9, the least common multiple of 9,3.
9x^{2}-9x=2-6x
Multiply -3 and 2 to get -6.
9x^{2}-9x-2=-6x
Subtract 2 from both sides.
9x^{2}-9x-2+6x=0
Add 6x to both sides.
9x^{2}-3x-2=0
Combine -9x and 6x to get -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 9\left(-2\right)}}{2\times 9}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-36\left(-2\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\times 9}
Multiply -36 times -2.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\times 9}
Add 9 to 72.
x=\frac{-\left(-3\right)±9}{2\times 9}
Take the square root of 81.
x=\frac{3±9}{2\times 9}
The opposite of -3 is 3.
x=\frac{3±9}{18}
Multiply 2 times 9.
x=\frac{12}{18}
Now solve the equation x=\frac{3±9}{18} when ± is plus. Add 3 to 9.
x=\frac{2}{3}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{6}{18}
Now solve the equation x=\frac{3±9}{18} when ± is minus. Subtract 9 from 3.
x=-\frac{1}{3}
Reduce the fraction \frac{-6}{18} to lowest terms by extracting and canceling out 6.
x=\frac{2}{3} x=-\frac{1}{3}
The equation is now solved.
9x^{2}-9x=2-3\times 2x
Multiply both sides of the equation by 9, the least common multiple of 9,3.
9x^{2}-9x=2-6x
Multiply -3 and 2 to get -6.
9x^{2}-9x+6x=2
Add 6x to both sides.
9x^{2}-3x=2
Combine -9x and 6x to get -3x.
\frac{9x^{2}-3x}{9}=\frac{2}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{3}{9}\right)x=\frac{2}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{1}{3}x=\frac{2}{9}
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{9}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{9}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{4}
Add \frac{2}{9} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{4}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{1}{2} x-\frac{1}{6}=-\frac{1}{2}
Simplify.
x=\frac{2}{3} x=-\frac{1}{3}
Add \frac{1}{6} to both sides of the equation.