Solve for x (complex solution)
x=\frac{-\sqrt{3}i+3}{2}\approx 1.5-0.866025404i
x=\frac{3+\sqrt{3}i}{2}\approx 1.5+0.866025404i
Graph
Share
Copied to clipboard
x^{2}-x+4-2x^{2}=-4x+7
Subtract 2x^{2} from both sides.
-x^{2}-x+4=-4x+7
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x+4+4x=7
Add 4x to both sides.
-x^{2}+3x+4=7
Combine -x and 4x to get 3x.
-x^{2}+3x+4-7=0
Subtract 7 from both sides.
-x^{2}+3x-3=0
Subtract 7 from 4 to get -3.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square 3.
x=\frac{-3±\sqrt{9+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-3±\sqrt{9-12}}{2\left(-1\right)}
Multiply 4 times -3.
x=\frac{-3±\sqrt{-3}}{2\left(-1\right)}
Add 9 to -12.
x=\frac{-3±\sqrt{3}i}{2\left(-1\right)}
Take the square root of -3.
x=\frac{-3±\sqrt{3}i}{-2}
Multiply 2 times -1.
x=\frac{-3+\sqrt{3}i}{-2}
Now solve the equation x=\frac{-3±\sqrt{3}i}{-2} when ± is plus. Add -3 to i\sqrt{3}.
x=\frac{-\sqrt{3}i+3}{2}
Divide -3+i\sqrt{3} by -2.
x=\frac{-\sqrt{3}i-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{3}i}{-2} when ± is minus. Subtract i\sqrt{3} from -3.
x=\frac{3+\sqrt{3}i}{2}
Divide -3-i\sqrt{3} by -2.
x=\frac{-\sqrt{3}i+3}{2} x=\frac{3+\sqrt{3}i}{2}
The equation is now solved.
x^{2}-x+4-2x^{2}=-4x+7
Subtract 2x^{2} from both sides.
-x^{2}-x+4=-4x+7
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x+4+4x=7
Add 4x to both sides.
-x^{2}+3x+4=7
Combine -x and 4x to get 3x.
-x^{2}+3x=7-4
Subtract 4 from both sides.
-x^{2}+3x=3
Subtract 4 from 7 to get 3.
\frac{-x^{2}+3x}{-1}=\frac{3}{-1}
Divide both sides by -1.
x^{2}+\frac{3}{-1}x=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-3x=\frac{3}{-1}
Divide 3 by -1.
x^{2}-3x=-3
Divide 3 by -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-3+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-3+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{3}{4}
Add -3 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{3}i}{2} x-\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}