Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x+12-2x^{2}=3x+7
Subtract 2x^{2} from both sides.
-x^{2}-x+12=3x+7
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x+12-3x=7
Subtract 3x from both sides.
-x^{2}-4x+12=7
Combine -x and -3x to get -4x.
-x^{2}-4x+12-7=0
Subtract 7 from both sides.
-x^{2}-4x+5=0
Subtract 7 from 12 to get 5.
a+b=-4 ab=-5=-5
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
a=1 b=-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-x^{2}+x\right)+\left(-5x+5\right)
Rewrite -x^{2}-4x+5 as \left(-x^{2}+x\right)+\left(-5x+5\right).
x\left(-x+1\right)+5\left(-x+1\right)
Factor out x in the first and 5 in the second group.
\left(-x+1\right)\left(x+5\right)
Factor out common term -x+1 by using distributive property.
x=1 x=-5
To find equation solutions, solve -x+1=0 and x+5=0.
x^{2}-x+12-2x^{2}=3x+7
Subtract 2x^{2} from both sides.
-x^{2}-x+12=3x+7
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x+12-3x=7
Subtract 3x from both sides.
-x^{2}-4x+12=7
Combine -x and -3x to get -4x.
-x^{2}-4x+12-7=0
Subtract 7 from both sides.
-x^{2}-4x+5=0
Subtract 7 from 12 to get 5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2\left(-1\right)}
Multiply 4 times 5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2\left(-1\right)}
Add 16 to 20.
x=\frac{-\left(-4\right)±6}{2\left(-1\right)}
Take the square root of 36.
x=\frac{4±6}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±6}{-2}
Multiply 2 times -1.
x=\frac{10}{-2}
Now solve the equation x=\frac{4±6}{-2} when ± is plus. Add 4 to 6.
x=-5
Divide 10 by -2.
x=-\frac{2}{-2}
Now solve the equation x=\frac{4±6}{-2} when ± is minus. Subtract 6 from 4.
x=1
Divide -2 by -2.
x=-5 x=1
The equation is now solved.
x^{2}-x+12-2x^{2}=3x+7
Subtract 2x^{2} from both sides.
-x^{2}-x+12=3x+7
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x+12-3x=7
Subtract 3x from both sides.
-x^{2}-4x+12=7
Combine -x and -3x to get -4x.
-x^{2}-4x=7-12
Subtract 12 from both sides.
-x^{2}-4x=-5
Subtract 12 from 7 to get -5.
\frac{-x^{2}-4x}{-1}=-\frac{5}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=-\frac{5}{-1}
Divide -4 by -1.
x^{2}+4x=5
Divide -5 by -1.
x^{2}+4x+2^{2}=5+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=5+4
Square 2.
x^{2}+4x+4=9
Add 5 to 4.
\left(x+2\right)^{2}=9
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x+2=3 x+2=-3
Simplify.
x=1 x=-5
Subtract 2 from both sides of the equation.