Solve for b (complex solution)
\left\{\begin{matrix}\\b=6\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&b=6\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=6\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&b=6\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-bx+9=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-bx+9=x^{2}-6x+9-x^{2}
Subtract x^{2} from both sides.
-bx+9=-6x+9
Combine x^{2} and -x^{2} to get 0.
-bx=-6x+9-9
Subtract 9 from both sides.
-bx=-6x
Subtract 9 from 9 to get 0.
\left(-x\right)b=-6x
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=-\frac{6x}{-x}
Divide both sides by -x.
b=-\frac{6x}{-x}
Dividing by -x undoes the multiplication by -x.
b=6
Divide -6x by -x.
x^{2}-bx+9=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-bx+9-x^{2}=-6x+9
Subtract x^{2} from both sides.
-bx+9=-6x+9
Combine x^{2} and -x^{2} to get 0.
-bx+9+6x=9
Add 6x to both sides.
-bx+6x=9-9
Subtract 9 from both sides.
-bx+6x=0
Subtract 9 from 9 to get 0.
\left(-b+6\right)x=0
Combine all terms containing x.
\left(6-b\right)x=0
The equation is in standard form.
x=0
Divide 0 by 6-b.
x^{2}-bx+9=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-bx+9=x^{2}-6x+9-x^{2}
Subtract x^{2} from both sides.
-bx+9=-6x+9
Combine x^{2} and -x^{2} to get 0.
-bx=-6x+9-9
Subtract 9 from both sides.
-bx=-6x
Subtract 9 from 9 to get 0.
\left(-x\right)b=-6x
The equation is in standard form.
\frac{\left(-x\right)b}{-x}=-\frac{6x}{-x}
Divide both sides by -x.
b=-\frac{6x}{-x}
Dividing by -x undoes the multiplication by -x.
b=6
Divide -6x by -x.
x^{2}-bx+9=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-bx+9-x^{2}=-6x+9
Subtract x^{2} from both sides.
-bx+9=-6x+9
Combine x^{2} and -x^{2} to get 0.
-bx+9+6x=9
Add 6x to both sides.
-bx+6x=9-9
Subtract 9 from both sides.
-bx+6x=0
Subtract 9 from 9 to get 0.
\left(-b+6\right)x=0
Combine all terms containing x.
\left(6-b\right)x=0
The equation is in standard form.
x=0
Divide 0 by 6-b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}