Solve for x
x = \frac{\sqrt{85} + 9}{2} \approx 9.109772229
x=\frac{9-\sqrt{85}}{2}\approx -0.109772229
Graph
Share
Copied to clipboard
x^{2}-9x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-1\right)}}{2}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+4}}{2}
Multiply -4 times -1.
x=\frac{-\left(-9\right)±\sqrt{85}}{2}
Add 81 to 4.
x=\frac{9±\sqrt{85}}{2}
The opposite of -9 is 9.
x=\frac{\sqrt{85}+9}{2}
Now solve the equation x=\frac{9±\sqrt{85}}{2} when ± is plus. Add 9 to \sqrt{85}.
x=\frac{9-\sqrt{85}}{2}
Now solve the equation x=\frac{9±\sqrt{85}}{2} when ± is minus. Subtract \sqrt{85} from 9.
x=\frac{\sqrt{85}+9}{2} x=\frac{9-\sqrt{85}}{2}
The equation is now solved.
x^{2}-9x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-9x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
x^{2}-9x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
x^{2}-9x=1
Subtract -1 from 0.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=1+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=1+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{85}{4}
Add 1 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{85}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{85}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{85}}{2} x-\frac{9}{2}=-\frac{\sqrt{85}}{2}
Simplify.
x=\frac{\sqrt{85}+9}{2} x=\frac{9-\sqrt{85}}{2}
Add \frac{9}{2} to both sides of the equation.
x ^ 2 -9x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 9 rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{2} - u s = \frac{9}{2} + u
Two numbers r and s sum up to 9 exactly when the average of the two numbers is \frac{1}{2}*9 = \frac{9}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{2} - u) (\frac{9}{2} + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
\frac{81}{4} - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-\frac{81}{4} = -\frac{85}{4}
Simplify the expression by subtracting \frac{81}{4} on both sides
u^2 = \frac{85}{4} u = \pm\sqrt{\frac{85}{4}} = \pm \frac{\sqrt{85}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{2} - \frac{\sqrt{85}}{2} = -0.110 s = \frac{9}{2} + \frac{\sqrt{85}}{2} = 9.110
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}