Solve for x
x=-9
x=-3
Graph
Share
Copied to clipboard
x^{2}-9=2\left(x^{2}+6x+9\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}-9=2x^{2}+12x+18
Use the distributive property to multiply 2 by x^{2}+6x+9.
x^{2}-9-2x^{2}=12x+18
Subtract 2x^{2} from both sides.
-x^{2}-9=12x+18
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-9-12x=18
Subtract 12x from both sides.
-x^{2}-9-12x-18=0
Subtract 18 from both sides.
-x^{2}-27-12x=0
Subtract 18 from -9 to get -27.
-x^{2}-12x-27=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-12 ab=-\left(-27\right)=27
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-27. To find a and b, set up a system to be solved.
-1,-27 -3,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 27.
-1-27=-28 -3-9=-12
Calculate the sum for each pair.
a=-3 b=-9
The solution is the pair that gives sum -12.
\left(-x^{2}-3x\right)+\left(-9x-27\right)
Rewrite -x^{2}-12x-27 as \left(-x^{2}-3x\right)+\left(-9x-27\right).
x\left(-x-3\right)+9\left(-x-3\right)
Factor out x in the first and 9 in the second group.
\left(-x-3\right)\left(x+9\right)
Factor out common term -x-3 by using distributive property.
x=-3 x=-9
To find equation solutions, solve -x-3=0 and x+9=0.
x^{2}-9=2\left(x^{2}+6x+9\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}-9=2x^{2}+12x+18
Use the distributive property to multiply 2 by x^{2}+6x+9.
x^{2}-9-2x^{2}=12x+18
Subtract 2x^{2} from both sides.
-x^{2}-9=12x+18
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-9-12x=18
Subtract 12x from both sides.
-x^{2}-9-12x-18=0
Subtract 18 from both sides.
-x^{2}-27-12x=0
Subtract 18 from -9 to get -27.
-x^{2}-12x-27=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-1\right)\left(-27\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -12 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-1\right)\left(-27\right)}}{2\left(-1\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+4\left(-27\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-12\right)±\sqrt{144-108}}{2\left(-1\right)}
Multiply 4 times -27.
x=\frac{-\left(-12\right)±\sqrt{36}}{2\left(-1\right)}
Add 144 to -108.
x=\frac{-\left(-12\right)±6}{2\left(-1\right)}
Take the square root of 36.
x=\frac{12±6}{2\left(-1\right)}
The opposite of -12 is 12.
x=\frac{12±6}{-2}
Multiply 2 times -1.
x=\frac{18}{-2}
Now solve the equation x=\frac{12±6}{-2} when ± is plus. Add 12 to 6.
x=-9
Divide 18 by -2.
x=\frac{6}{-2}
Now solve the equation x=\frac{12±6}{-2} when ± is minus. Subtract 6 from 12.
x=-3
Divide 6 by -2.
x=-9 x=-3
The equation is now solved.
x^{2}-9=2\left(x^{2}+6x+9\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}-9=2x^{2}+12x+18
Use the distributive property to multiply 2 by x^{2}+6x+9.
x^{2}-9-2x^{2}=12x+18
Subtract 2x^{2} from both sides.
-x^{2}-9=12x+18
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-9-12x=18
Subtract 12x from both sides.
-x^{2}-12x=18+9
Add 9 to both sides.
-x^{2}-12x=27
Add 18 and 9 to get 27.
\frac{-x^{2}-12x}{-1}=\frac{27}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{12}{-1}\right)x=\frac{27}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+12x=\frac{27}{-1}
Divide -12 by -1.
x^{2}+12x=-27
Divide 27 by -1.
x^{2}+12x+6^{2}=-27+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-27+36
Square 6.
x^{2}+12x+36=9
Add -27 to 36.
\left(x+6\right)^{2}=9
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x+6=3 x+6=-3
Simplify.
x=-3 x=-9
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}