Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x+10-13x=0
Subtract 13x from both sides.
x^{2}-21x+10=0
Combine -8x and -13x to get -21x.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 10}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -21 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 10}}{2}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-40}}{2}
Multiply -4 times 10.
x=\frac{-\left(-21\right)±\sqrt{401}}{2}
Add 441 to -40.
x=\frac{21±\sqrt{401}}{2}
The opposite of -21 is 21.
x=\frac{\sqrt{401}+21}{2}
Now solve the equation x=\frac{21±\sqrt{401}}{2} when ± is plus. Add 21 to \sqrt{401}.
x=\frac{21-\sqrt{401}}{2}
Now solve the equation x=\frac{21±\sqrt{401}}{2} when ± is minus. Subtract \sqrt{401} from 21.
x=\frac{\sqrt{401}+21}{2} x=\frac{21-\sqrt{401}}{2}
The equation is now solved.
x^{2}-8x+10-13x=0
Subtract 13x from both sides.
x^{2}-21x+10=0
Combine -8x and -13x to get -21x.
x^{2}-21x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-10+\left(-\frac{21}{2}\right)^{2}
Divide -21, the coefficient of the x term, by 2 to get -\frac{21}{2}. Then add the square of -\frac{21}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-21x+\frac{441}{4}=-10+\frac{441}{4}
Square -\frac{21}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-21x+\frac{441}{4}=\frac{401}{4}
Add -10 to \frac{441}{4}.
\left(x-\frac{21}{2}\right)^{2}=\frac{401}{4}
Factor x^{2}-21x+\frac{441}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{401}{4}}
Take the square root of both sides of the equation.
x-\frac{21}{2}=\frac{\sqrt{401}}{2} x-\frac{21}{2}=-\frac{\sqrt{401}}{2}
Simplify.
x=\frac{\sqrt{401}+21}{2} x=\frac{21-\sqrt{401}}{2}
Add \frac{21}{2} to both sides of the equation.