x ^ { 2 } - 7,2 x - 6,8 = 0
Solve for x
x = \frac{\sqrt{494} + 18}{5} \approx 8.045222154
x=\frac{18-\sqrt{494}}{5}\approx -0.845222154
Graph
Share
Copied to clipboard
x^{2}-7,2x-6,8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7,2\right)±\sqrt{\left(-7,2\right)^{2}-4\left(-6,8\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7,2 for b, and -6,8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7,2\right)±\sqrt{51,84-4\left(-6,8\right)}}{2}
Square -7,2 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-7,2\right)±\sqrt{51,84+27,2}}{2}
Multiply -4 times -6,8.
x=\frac{-\left(-7,2\right)±\sqrt{79,04}}{2}
Add 51,84 to 27,2 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-7,2\right)±\frac{2\sqrt{494}}{5}}{2}
Take the square root of 79,04.
x=\frac{7,2±\frac{2\sqrt{494}}{5}}{2}
The opposite of -7,2 is 7,2.
x=\frac{2\sqrt{494}+36}{2\times 5}
Now solve the equation x=\frac{7,2±\frac{2\sqrt{494}}{5}}{2} when ± is plus. Add 7,2 to \frac{2\sqrt{494}}{5}.
x=\frac{\sqrt{494}+18}{5}
Divide \frac{36+2\sqrt{494}}{5} by 2.
x=\frac{36-2\sqrt{494}}{2\times 5}
Now solve the equation x=\frac{7,2±\frac{2\sqrt{494}}{5}}{2} when ± is minus. Subtract \frac{2\sqrt{494}}{5} from 7,2.
x=\frac{18-\sqrt{494}}{5}
Divide \frac{36-2\sqrt{494}}{5} by 2.
x=\frac{\sqrt{494}+18}{5} x=\frac{18-\sqrt{494}}{5}
The equation is now solved.
x^{2}-7,2x-6,8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-7,2x-6,8-\left(-6,8\right)=-\left(-6,8\right)
Add 6,8 to both sides of the equation.
x^{2}-7,2x=-\left(-6,8\right)
Subtracting -6,8 from itself leaves 0.
x^{2}-7,2x=6,8
Subtract -6,8 from 0.
x^{2}-7,2x+\left(-3,6\right)^{2}=6,8+\left(-3,6\right)^{2}
Divide -7,2, the coefficient of the x term, by 2 to get -3,6. Then add the square of -3,6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7,2x+12,96=6,8+12,96
Square -3,6 by squaring both the numerator and the denominator of the fraction.
x^{2}-7,2x+12,96=19,76
Add 6,8 to 12,96 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-3,6\right)^{2}=19,76
Factor x^{2}-7,2x+12,96. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3,6\right)^{2}}=\sqrt{19,76}
Take the square root of both sides of the equation.
x-3,6=\frac{\sqrt{494}}{5} x-3,6=-\frac{\sqrt{494}}{5}
Simplify.
x=\frac{\sqrt{494}+18}{5} x=\frac{18-\sqrt{494}}{5}
Add 3,6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}