Solve for x (complex solution)
x=\frac{7+\sqrt{255}i}{2}\approx 3.5+7.984359711i
x=\frac{-\sqrt{255}i+7}{2}\approx 3.5-7.984359711i
Graph
Share
Copied to clipboard
x^{2}-7x+76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 76}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and 76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 76}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-304}}{2}
Multiply -4 times 76.
x=\frac{-\left(-7\right)±\sqrt{-255}}{2}
Add 49 to -304.
x=\frac{-\left(-7\right)±\sqrt{255}i}{2}
Take the square root of -255.
x=\frac{7±\sqrt{255}i}{2}
The opposite of -7 is 7.
x=\frac{7+\sqrt{255}i}{2}
Now solve the equation x=\frac{7±\sqrt{255}i}{2} when ± is plus. Add 7 to i\sqrt{255}.
x=\frac{-\sqrt{255}i+7}{2}
Now solve the equation x=\frac{7±\sqrt{255}i}{2} when ± is minus. Subtract i\sqrt{255} from 7.
x=\frac{7+\sqrt{255}i}{2} x=\frac{-\sqrt{255}i+7}{2}
The equation is now solved.
x^{2}-7x+76=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-7x+76-76=-76
Subtract 76 from both sides of the equation.
x^{2}-7x=-76
Subtracting 76 from itself leaves 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-76+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-76+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=-\frac{255}{4}
Add -76 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=-\frac{255}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{255}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{255}i}{2} x-\frac{7}{2}=-\frac{\sqrt{255}i}{2}
Simplify.
x=\frac{7+\sqrt{255}i}{2} x=\frac{-\sqrt{255}i+7}{2}
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}