Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-7x+5=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-7x+5-9=9-9
Subtract 9 from both sides of the equation.
x^{2}-7x+5-9=0
Subtracting 9 from itself leaves 0.
x^{2}-7x-4=0
Subtract 9 from 5.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-4\right)}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+16}}{2}
Multiply -4 times -4.
x=\frac{-\left(-7\right)±\sqrt{65}}{2}
Add 49 to 16.
x=\frac{7±\sqrt{65}}{2}
The opposite of -7 is 7.
x=\frac{\sqrt{65}+7}{2}
Now solve the equation x=\frac{7±\sqrt{65}}{2} when ± is plus. Add 7 to \sqrt{65}.
x=\frac{7-\sqrt{65}}{2}
Now solve the equation x=\frac{7±\sqrt{65}}{2} when ± is minus. Subtract \sqrt{65} from 7.
x=\frac{\sqrt{65}+7}{2} x=\frac{7-\sqrt{65}}{2}
The equation is now solved.
x^{2}-7x+5=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-7x+5-5=9-5
Subtract 5 from both sides of the equation.
x^{2}-7x=9-5
Subtracting 5 from itself leaves 0.
x^{2}-7x=4
Subtract 5 from 9.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=4+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=4+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{65}{4}
Add 4 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{65}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{65}}{2} x-\frac{7}{2}=-\frac{\sqrt{65}}{2}
Simplify.
x=\frac{\sqrt{65}+7}{2} x=\frac{7-\sqrt{65}}{2}
Add \frac{7}{2} to both sides of the equation.