Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-60x+540=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 540}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 540}}{2}
Square -60.
x=\frac{-\left(-60\right)±\sqrt{3600-2160}}{2}
Multiply -4 times 540.
x=\frac{-\left(-60\right)±\sqrt{1440}}{2}
Add 3600 to -2160.
x=\frac{-\left(-60\right)±12\sqrt{10}}{2}
Take the square root of 1440.
x=\frac{60±12\sqrt{10}}{2}
The opposite of -60 is 60.
x=\frac{12\sqrt{10}+60}{2}
Now solve the equation x=\frac{60±12\sqrt{10}}{2} when ± is plus. Add 60 to 12\sqrt{10}.
x=6\sqrt{10}+30
Divide 60+12\sqrt{10} by 2.
x=\frac{60-12\sqrt{10}}{2}
Now solve the equation x=\frac{60±12\sqrt{10}}{2} when ± is minus. Subtract 12\sqrt{10} from 60.
x=30-6\sqrt{10}
Divide 60-12\sqrt{10} by 2.
x^{2}-60x+540=\left(x-\left(6\sqrt{10}+30\right)\right)\left(x-\left(30-6\sqrt{10}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 30+6\sqrt{10} for x_{1} and 30-6\sqrt{10} for x_{2}.
x ^ 2 -60x +540 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 60 rs = 540
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 30 - u s = 30 + u
Two numbers r and s sum up to 60 exactly when the average of the two numbers is \frac{1}{2}*60 = 30. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(30 - u) (30 + u) = 540
To solve for unknown quantity u, substitute these in the product equation rs = 540
900 - u^2 = 540
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 540-900 = -360
Simplify the expression by subtracting 900 on both sides
u^2 = 360 u = \pm\sqrt{360} = \pm \sqrt{360}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =30 - \sqrt{360} = 11.026 s = 30 + \sqrt{360} = 48.974
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.