Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9=25-20x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-6x+9-25=-20x+4x^{2}
Subtract 25 from both sides.
x^{2}-6x-16=-20x+4x^{2}
Subtract 25 from 9 to get -16.
x^{2}-6x-16+20x=4x^{2}
Add 20x to both sides.
x^{2}+14x-16=4x^{2}
Combine -6x and 20x to get 14x.
x^{2}+14x-16-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+14x-16=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
a+b=14 ab=-3\left(-16\right)=48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
1,48 2,24 3,16 4,12 6,8
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 48.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
Calculate the sum for each pair.
a=8 b=6
The solution is the pair that gives sum 14.
\left(-3x^{2}+8x\right)+\left(6x-16\right)
Rewrite -3x^{2}+14x-16 as \left(-3x^{2}+8x\right)+\left(6x-16\right).
-x\left(3x-8\right)+2\left(3x-8\right)
Factor out -x in the first and 2 in the second group.
\left(3x-8\right)\left(-x+2\right)
Factor out common term 3x-8 by using distributive property.
x=\frac{8}{3} x=2
To find equation solutions, solve 3x-8=0 and -x+2=0.
x^{2}-6x+9=25-20x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-6x+9-25=-20x+4x^{2}
Subtract 25 from both sides.
x^{2}-6x-16=-20x+4x^{2}
Subtract 25 from 9 to get -16.
x^{2}-6x-16+20x=4x^{2}
Add 20x to both sides.
x^{2}+14x-16=4x^{2}
Combine -6x and 20x to get 14x.
x^{2}+14x-16-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+14x-16=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-14±\sqrt{14^{2}-4\left(-3\right)\left(-16\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 14 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-3\right)\left(-16\right)}}{2\left(-3\right)}
Square 14.
x=\frac{-14±\sqrt{196+12\left(-16\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-14±\sqrt{196-192}}{2\left(-3\right)}
Multiply 12 times -16.
x=\frac{-14±\sqrt{4}}{2\left(-3\right)}
Add 196 to -192.
x=\frac{-14±2}{2\left(-3\right)}
Take the square root of 4.
x=\frac{-14±2}{-6}
Multiply 2 times -3.
x=-\frac{12}{-6}
Now solve the equation x=\frac{-14±2}{-6} when ± is plus. Add -14 to 2.
x=2
Divide -12 by -6.
x=-\frac{16}{-6}
Now solve the equation x=\frac{-14±2}{-6} when ± is minus. Subtract 2 from -14.
x=\frac{8}{3}
Reduce the fraction \frac{-16}{-6} to lowest terms by extracting and canceling out 2.
x=2 x=\frac{8}{3}
The equation is now solved.
x^{2}-6x+9=25-20x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-6x+9+20x=25+4x^{2}
Add 20x to both sides.
x^{2}+14x+9=25+4x^{2}
Combine -6x and 20x to get 14x.
x^{2}+14x+9-4x^{2}=25
Subtract 4x^{2} from both sides.
-3x^{2}+14x+9=25
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+14x=25-9
Subtract 9 from both sides.
-3x^{2}+14x=16
Subtract 9 from 25 to get 16.
\frac{-3x^{2}+14x}{-3}=\frac{16}{-3}
Divide both sides by -3.
x^{2}+\frac{14}{-3}x=\frac{16}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{14}{3}x=\frac{16}{-3}
Divide 14 by -3.
x^{2}-\frac{14}{3}x=-\frac{16}{3}
Divide 16 by -3.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=-\frac{16}{3}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=-\frac{16}{3}+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{1}{9}
Add -\frac{16}{3} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{1}{3} x-\frac{7}{3}=-\frac{1}{3}
Simplify.
x=\frac{8}{3} x=2
Add \frac{7}{3} to both sides of the equation.