Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+81=9x+27-6x^{2}
Use the distributive property to multiply 9-3x by 2x+3 and combine like terms.
x^{2}-6x+81-9x=27-6x^{2}
Subtract 9x from both sides.
x^{2}-15x+81=27-6x^{2}
Combine -6x and -9x to get -15x.
x^{2}-15x+81-27=-6x^{2}
Subtract 27 from both sides.
x^{2}-15x+54=-6x^{2}
Subtract 27 from 81 to get 54.
x^{2}-15x+54+6x^{2}=0
Add 6x^{2} to both sides.
7x^{2}-15x+54=0
Combine x^{2} and 6x^{2} to get 7x^{2}.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 7\times 54}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -15 for b, and 54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 7\times 54}}{2\times 7}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-28\times 54}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-15\right)±\sqrt{225-1512}}{2\times 7}
Multiply -28 times 54.
x=\frac{-\left(-15\right)±\sqrt{-1287}}{2\times 7}
Add 225 to -1512.
x=\frac{-\left(-15\right)±3\sqrt{143}i}{2\times 7}
Take the square root of -1287.
x=\frac{15±3\sqrt{143}i}{2\times 7}
The opposite of -15 is 15.
x=\frac{15±3\sqrt{143}i}{14}
Multiply 2 times 7.
x=\frac{15+3\sqrt{143}i}{14}
Now solve the equation x=\frac{15±3\sqrt{143}i}{14} when ± is plus. Add 15 to 3i\sqrt{143}.
x=\frac{-3\sqrt{143}i+15}{14}
Now solve the equation x=\frac{15±3\sqrt{143}i}{14} when ± is minus. Subtract 3i\sqrt{143} from 15.
x=\frac{15+3\sqrt{143}i}{14} x=\frac{-3\sqrt{143}i+15}{14}
The equation is now solved.
x^{2}-6x+81=9x+27-6x^{2}
Use the distributive property to multiply 9-3x by 2x+3 and combine like terms.
x^{2}-6x+81-9x=27-6x^{2}
Subtract 9x from both sides.
x^{2}-15x+81=27-6x^{2}
Combine -6x and -9x to get -15x.
x^{2}-15x+81+6x^{2}=27
Add 6x^{2} to both sides.
7x^{2}-15x+81=27
Combine x^{2} and 6x^{2} to get 7x^{2}.
7x^{2}-15x=27-81
Subtract 81 from both sides.
7x^{2}-15x=-54
Subtract 81 from 27 to get -54.
\frac{7x^{2}-15x}{7}=-\frac{54}{7}
Divide both sides by 7.
x^{2}-\frac{15}{7}x=-\frac{54}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{15}{7}x+\left(-\frac{15}{14}\right)^{2}=-\frac{54}{7}+\left(-\frac{15}{14}\right)^{2}
Divide -\frac{15}{7}, the coefficient of the x term, by 2 to get -\frac{15}{14}. Then add the square of -\frac{15}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{7}x+\frac{225}{196}=-\frac{54}{7}+\frac{225}{196}
Square -\frac{15}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{7}x+\frac{225}{196}=-\frac{1287}{196}
Add -\frac{54}{7} to \frac{225}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{14}\right)^{2}=-\frac{1287}{196}
Factor x^{2}-\frac{15}{7}x+\frac{225}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{14}\right)^{2}}=\sqrt{-\frac{1287}{196}}
Take the square root of both sides of the equation.
x-\frac{15}{14}=\frac{3\sqrt{143}i}{14} x-\frac{15}{14}=-\frac{3\sqrt{143}i}{14}
Simplify.
x=\frac{15+3\sqrt{143}i}{14} x=\frac{-3\sqrt{143}i+15}{14}
Add \frac{15}{14} to both sides of the equation.