Solve for x
x = \frac{11}{6} = 1\frac{5}{6} \approx 1.833333333
x = \frac{25}{6} = 4\frac{1}{6} \approx 4.166666667
Graph
Share
Copied to clipboard
x^{2}-6x+\frac{275}{36}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times \frac{275}{36}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and \frac{275}{36} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times \frac{275}{36}}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-\frac{275}{9}}}{2}
Multiply -4 times \frac{275}{36}.
x=\frac{-\left(-6\right)±\sqrt{\frac{49}{9}}}{2}
Add 36 to -\frac{275}{9}.
x=\frac{-\left(-6\right)±\frac{7}{3}}{2}
Take the square root of \frac{49}{9}.
x=\frac{6±\frac{7}{3}}{2}
The opposite of -6 is 6.
x=\frac{\frac{25}{3}}{2}
Now solve the equation x=\frac{6±\frac{7}{3}}{2} when ± is plus. Add 6 to \frac{7}{3}.
x=\frac{25}{6}
Divide \frac{25}{3} by 2.
x=\frac{\frac{11}{3}}{2}
Now solve the equation x=\frac{6±\frac{7}{3}}{2} when ± is minus. Subtract \frac{7}{3} from 6.
x=\frac{11}{6}
Divide \frac{11}{3} by 2.
x=\frac{25}{6} x=\frac{11}{6}
The equation is now solved.
x^{2}-6x+\frac{275}{36}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-6x+\frac{275}{36}-\frac{275}{36}=-\frac{275}{36}
Subtract \frac{275}{36} from both sides of the equation.
x^{2}-6x=-\frac{275}{36}
Subtracting \frac{275}{36} from itself leaves 0.
x^{2}-6x+\left(-3\right)^{2}=-\frac{275}{36}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{275}{36}+9
Square -3.
x^{2}-6x+9=\frac{49}{36}
Add -\frac{275}{36} to 9.
\left(x-3\right)^{2}=\frac{49}{36}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
x-3=\frac{7}{6} x-3=-\frac{7}{6}
Simplify.
x=\frac{25}{6} x=\frac{11}{6}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}