Solve for x (complex solution)
x=\frac{1+5\sqrt{823}i}{4}\approx 0.25+35.859970719i
x=\frac{-5\sqrt{823}i+1}{4}\approx 0.25-35.859970719i
Graph
Share
Copied to clipboard
-4x^{2}+2x-56=5088
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}+2x-56-5088=0
Subtract 5088 from both sides.
-4x^{2}+2x-5144=0
Subtract 5088 from -56 to get -5144.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)\left(-5144\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 2 for b, and -5144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)\left(-5144\right)}}{2\left(-4\right)}
Square 2.
x=\frac{-2±\sqrt{4+16\left(-5144\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-2±\sqrt{4-82304}}{2\left(-4\right)}
Multiply 16 times -5144.
x=\frac{-2±\sqrt{-82300}}{2\left(-4\right)}
Add 4 to -82304.
x=\frac{-2±10\sqrt{823}i}{2\left(-4\right)}
Take the square root of -82300.
x=\frac{-2±10\sqrt{823}i}{-8}
Multiply 2 times -4.
x=\frac{-2+10\sqrt{823}i}{-8}
Now solve the equation x=\frac{-2±10\sqrt{823}i}{-8} when ± is plus. Add -2 to 10i\sqrt{823}.
x=\frac{-5\sqrt{823}i+1}{4}
Divide -2+10i\sqrt{823} by -8.
x=\frac{-10\sqrt{823}i-2}{-8}
Now solve the equation x=\frac{-2±10\sqrt{823}i}{-8} when ± is minus. Subtract 10i\sqrt{823} from -2.
x=\frac{1+5\sqrt{823}i}{4}
Divide -2-10i\sqrt{823} by -8.
x=\frac{-5\sqrt{823}i+1}{4} x=\frac{1+5\sqrt{823}i}{4}
The equation is now solved.
-4x^{2}+2x-56=5088
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}+2x=5088+56
Add 56 to both sides.
-4x^{2}+2x=5144
Add 5088 and 56 to get 5144.
\frac{-4x^{2}+2x}{-4}=\frac{5144}{-4}
Divide both sides by -4.
x^{2}+\frac{2}{-4}x=\frac{5144}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{1}{2}x=\frac{5144}{-4}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x=-1286
Divide 5144 by -4.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-1286+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-1286+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{20575}{16}
Add -1286 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=-\frac{20575}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{20575}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{5\sqrt{823}i}{4} x-\frac{1}{4}=-\frac{5\sqrt{823}i}{4}
Simplify.
x=\frac{1+5\sqrt{823}i}{4} x=\frac{-5\sqrt{823}i+1}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}