Factor
x\left(3x-1\right)\left(14x+5\right)
Evaluate
x\left(3x-1\right)\left(14x+5\right)
Graph
Share
Copied to clipboard
x\left(x-5+42x^{2}\right)
Factor out x.
42x^{2}+x-5
Consider x-5+42x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=42\left(-5\right)=-210
Factor the expression by grouping. First, the expression needs to be rewritten as 42x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Calculate the sum for each pair.
a=-14 b=15
The solution is the pair that gives sum 1.
\left(42x^{2}-14x\right)+\left(15x-5\right)
Rewrite 42x^{2}+x-5 as \left(42x^{2}-14x\right)+\left(15x-5\right).
14x\left(3x-1\right)+5\left(3x-1\right)
Factor out 14x in the first and 5 in the second group.
\left(3x-1\right)\left(14x+5\right)
Factor out common term 3x-1 by using distributive property.
x\left(3x-1\right)\left(14x+5\right)
Rewrite the complete factored expression.
x^{2}-5x+42x^{3}
Multiply 6 and 7 to get 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}