Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-5x+3-3x=-7
Subtract 3x from both sides.
x^{2}-8x+3=-7
Combine -5x and -3x to get -8x.
x^{2}-8x+3+7=0
Add 7 to both sides.
x^{2}-8x+10=0
Add 3 and 7 to get 10.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 10}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 10}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-40}}{2}
Multiply -4 times 10.
x=\frac{-\left(-8\right)±\sqrt{24}}{2}
Add 64 to -40.
x=\frac{-\left(-8\right)±2\sqrt{6}}{2}
Take the square root of 24.
x=\frac{8±2\sqrt{6}}{2}
The opposite of -8 is 8.
x=\frac{2\sqrt{6}+8}{2}
Now solve the equation x=\frac{8±2\sqrt{6}}{2} when ± is plus. Add 8 to 2\sqrt{6}.
x=\sqrt{6}+4
Divide 8+2\sqrt{6} by 2.
x=\frac{8-2\sqrt{6}}{2}
Now solve the equation x=\frac{8±2\sqrt{6}}{2} when ± is minus. Subtract 2\sqrt{6} from 8.
x=4-\sqrt{6}
Divide 8-2\sqrt{6} by 2.
x=\sqrt{6}+4 x=4-\sqrt{6}
The equation is now solved.
x^{2}-5x+3-3x=-7
Subtract 3x from both sides.
x^{2}-8x+3=-7
Combine -5x and -3x to get -8x.
x^{2}-8x=-7-3
Subtract 3 from both sides.
x^{2}-8x=-10
Subtract 3 from -7 to get -10.
x^{2}-8x+\left(-4\right)^{2}=-10+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-10+16
Square -4.
x^{2}-8x+16=6
Add -10 to 16.
\left(x-4\right)^{2}=6
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x-4=\sqrt{6} x-4=-\sqrt{6}
Simplify.
x=\sqrt{6}+4 x=4-\sqrt{6}
Add 4 to both sides of the equation.