Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-43x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-43\right)±\sqrt{\left(-43\right)^{2}-4\times 10}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-43\right)±\sqrt{1849-4\times 10}}{2}
Square -43.
x=\frac{-\left(-43\right)±\sqrt{1849-40}}{2}
Multiply -4 times 10.
x=\frac{-\left(-43\right)±\sqrt{1809}}{2}
Add 1849 to -40.
x=\frac{-\left(-43\right)±3\sqrt{201}}{2}
Take the square root of 1809.
x=\frac{43±3\sqrt{201}}{2}
The opposite of -43 is 43.
x=\frac{3\sqrt{201}+43}{2}
Now solve the equation x=\frac{43±3\sqrt{201}}{2} when ± is plus. Add 43 to 3\sqrt{201}.
x=\frac{43-3\sqrt{201}}{2}
Now solve the equation x=\frac{43±3\sqrt{201}}{2} when ± is minus. Subtract 3\sqrt{201} from 43.
x^{2}-43x+10=\left(x-\frac{3\sqrt{201}+43}{2}\right)\left(x-\frac{43-3\sqrt{201}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{43+3\sqrt{201}}{2} for x_{1} and \frac{43-3\sqrt{201}}{2} for x_{2}.
x ^ 2 -43x +10 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 43 rs = 10
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{43}{2} - u s = \frac{43}{2} + u
Two numbers r and s sum up to 43 exactly when the average of the two numbers is \frac{1}{2}*43 = \frac{43}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{43}{2} - u) (\frac{43}{2} + u) = 10
To solve for unknown quantity u, substitute these in the product equation rs = 10
\frac{1849}{4} - u^2 = 10
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 10-\frac{1849}{4} = -\frac{1809}{4}
Simplify the expression by subtracting \frac{1849}{4} on both sides
u^2 = \frac{1809}{4} u = \pm\sqrt{\frac{1809}{4}} = \pm \frac{\sqrt{1809}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{43}{2} - \frac{\sqrt{1809}}{2} = 0.234 s = \frac{43}{2} + \frac{\sqrt{1809}}{2} = 42.766
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.