Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-400 ab=-4800000
To solve the equation, factor x^{2}-400x-4800000 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-4800000 2,-2400000 3,-1600000 4,-1200000 5,-960000 6,-800000 8,-600000 10,-480000 12,-400000 15,-320000 16,-300000 20,-240000 24,-200000 25,-192000 30,-160000 32,-150000 40,-120000 48,-100000 50,-96000 60,-80000 64,-75000 75,-64000 80,-60000 96,-50000 100,-48000 120,-40000 125,-38400 128,-37500 150,-32000 160,-30000 192,-25000 200,-24000 240,-20000 250,-19200 256,-18750 300,-16000 320,-15000 375,-12800 384,-12500 400,-12000 480,-10000 500,-9600 512,-9375 600,-8000 625,-7680 640,-7500 750,-6400 768,-6250 800,-6000 960,-5000 1000,-4800 1200,-4000 1250,-3840 1280,-3750 1500,-3200 1536,-3125 1600,-3000 1875,-2560 1920,-2500 2000,-2400
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4800000.
1-4800000=-4799999 2-2400000=-2399998 3-1600000=-1599997 4-1200000=-1199996 5-960000=-959995 6-800000=-799994 8-600000=-599992 10-480000=-479990 12-400000=-399988 15-320000=-319985 16-300000=-299984 20-240000=-239980 24-200000=-199976 25-192000=-191975 30-160000=-159970 32-150000=-149968 40-120000=-119960 48-100000=-99952 50-96000=-95950 60-80000=-79940 64-75000=-74936 75-64000=-63925 80-60000=-59920 96-50000=-49904 100-48000=-47900 120-40000=-39880 125-38400=-38275 128-37500=-37372 150-32000=-31850 160-30000=-29840 192-25000=-24808 200-24000=-23800 240-20000=-19760 250-19200=-18950 256-18750=-18494 300-16000=-15700 320-15000=-14680 375-12800=-12425 384-12500=-12116 400-12000=-11600 480-10000=-9520 500-9600=-9100 512-9375=-8863 600-8000=-7400 625-7680=-7055 640-7500=-6860 750-6400=-5650 768-6250=-5482 800-6000=-5200 960-5000=-4040 1000-4800=-3800 1200-4000=-2800 1250-3840=-2590 1280-3750=-2470 1500-3200=-1700 1536-3125=-1589 1600-3000=-1400 1875-2560=-685 1920-2500=-580 2000-2400=-400
Calculate the sum for each pair.
a=-2400 b=2000
The solution is the pair that gives sum -400.
\left(x-2400\right)\left(x+2000\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=2400 x=-2000
To find equation solutions, solve x-2400=0 and x+2000=0.
a+b=-400 ab=1\left(-4800000\right)=-4800000
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-4800000. To find a and b, set up a system to be solved.
1,-4800000 2,-2400000 3,-1600000 4,-1200000 5,-960000 6,-800000 8,-600000 10,-480000 12,-400000 15,-320000 16,-300000 20,-240000 24,-200000 25,-192000 30,-160000 32,-150000 40,-120000 48,-100000 50,-96000 60,-80000 64,-75000 75,-64000 80,-60000 96,-50000 100,-48000 120,-40000 125,-38400 128,-37500 150,-32000 160,-30000 192,-25000 200,-24000 240,-20000 250,-19200 256,-18750 300,-16000 320,-15000 375,-12800 384,-12500 400,-12000 480,-10000 500,-9600 512,-9375 600,-8000 625,-7680 640,-7500 750,-6400 768,-6250 800,-6000 960,-5000 1000,-4800 1200,-4000 1250,-3840 1280,-3750 1500,-3200 1536,-3125 1600,-3000 1875,-2560 1920,-2500 2000,-2400
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4800000.
1-4800000=-4799999 2-2400000=-2399998 3-1600000=-1599997 4-1200000=-1199996 5-960000=-959995 6-800000=-799994 8-600000=-599992 10-480000=-479990 12-400000=-399988 15-320000=-319985 16-300000=-299984 20-240000=-239980 24-200000=-199976 25-192000=-191975 30-160000=-159970 32-150000=-149968 40-120000=-119960 48-100000=-99952 50-96000=-95950 60-80000=-79940 64-75000=-74936 75-64000=-63925 80-60000=-59920 96-50000=-49904 100-48000=-47900 120-40000=-39880 125-38400=-38275 128-37500=-37372 150-32000=-31850 160-30000=-29840 192-25000=-24808 200-24000=-23800 240-20000=-19760 250-19200=-18950 256-18750=-18494 300-16000=-15700 320-15000=-14680 375-12800=-12425 384-12500=-12116 400-12000=-11600 480-10000=-9520 500-9600=-9100 512-9375=-8863 600-8000=-7400 625-7680=-7055 640-7500=-6860 750-6400=-5650 768-6250=-5482 800-6000=-5200 960-5000=-4040 1000-4800=-3800 1200-4000=-2800 1250-3840=-2590 1280-3750=-2470 1500-3200=-1700 1536-3125=-1589 1600-3000=-1400 1875-2560=-685 1920-2500=-580 2000-2400=-400
Calculate the sum for each pair.
a=-2400 b=2000
The solution is the pair that gives sum -400.
\left(x^{2}-2400x\right)+\left(2000x-4800000\right)
Rewrite x^{2}-400x-4800000 as \left(x^{2}-2400x\right)+\left(2000x-4800000\right).
x\left(x-2400\right)+2000\left(x-2400\right)
Factor out x in the first and 2000 in the second group.
\left(x-2400\right)\left(x+2000\right)
Factor out common term x-2400 by using distributive property.
x=2400 x=-2000
To find equation solutions, solve x-2400=0 and x+2000=0.
x^{2}-400x-4800000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-400\right)±\sqrt{\left(-400\right)^{2}-4\left(-4800000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -400 for b, and -4800000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-400\right)±\sqrt{160000-4\left(-4800000\right)}}{2}
Square -400.
x=\frac{-\left(-400\right)±\sqrt{160000+19200000}}{2}
Multiply -4 times -4800000.
x=\frac{-\left(-400\right)±\sqrt{19360000}}{2}
Add 160000 to 19200000.
x=\frac{-\left(-400\right)±4400}{2}
Take the square root of 19360000.
x=\frac{400±4400}{2}
The opposite of -400 is 400.
x=\frac{4800}{2}
Now solve the equation x=\frac{400±4400}{2} when ± is plus. Add 400 to 4400.
x=2400
Divide 4800 by 2.
x=-\frac{4000}{2}
Now solve the equation x=\frac{400±4400}{2} when ± is minus. Subtract 4400 from 400.
x=-2000
Divide -4000 by 2.
x=2400 x=-2000
The equation is now solved.
x^{2}-400x-4800000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-400x-4800000-\left(-4800000\right)=-\left(-4800000\right)
Add 4800000 to both sides of the equation.
x^{2}-400x=-\left(-4800000\right)
Subtracting -4800000 from itself leaves 0.
x^{2}-400x=4800000
Subtract -4800000 from 0.
x^{2}-400x+\left(-200\right)^{2}=4800000+\left(-200\right)^{2}
Divide -400, the coefficient of the x term, by 2 to get -200. Then add the square of -200 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-400x+40000=4800000+40000
Square -200.
x^{2}-400x+40000=4840000
Add 4800000 to 40000.
\left(x-200\right)^{2}=4840000
Factor x^{2}-400x+40000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-200\right)^{2}}=\sqrt{4840000}
Take the square root of both sides of the equation.
x-200=2200 x-200=-2200
Simplify.
x=2400 x=-2000
Add 200 to both sides of the equation.
x ^ 2 -400x -4800000 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 400 rs = -4800000
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 200 - u s = 200 + u
Two numbers r and s sum up to 400 exactly when the average of the two numbers is \frac{1}{2}*400 = 200. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(200 - u) (200 + u) = -4800000
To solve for unknown quantity u, substitute these in the product equation rs = -4800000
40000 - u^2 = -4800000
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -4800000-40000 = -4840000
Simplify the expression by subtracting 40000 on both sides
u^2 = 4840000 u = \pm\sqrt{4840000} = \pm 2200
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =200 - 2200 = -2000 s = 200 + 2200 = 2400
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.