Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(x^{2}-4x-40)
Multiply 5 and 8 to get 40.
x^{2}-4x-40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-40\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-40\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+160}}{2}
Multiply -4 times -40.
x=\frac{-\left(-4\right)±\sqrt{176}}{2}
Add 16 to 160.
x=\frac{-\left(-4\right)±4\sqrt{11}}{2}
Take the square root of 176.
x=\frac{4±4\sqrt{11}}{2}
The opposite of -4 is 4.
x=\frac{4\sqrt{11}+4}{2}
Now solve the equation x=\frac{4±4\sqrt{11}}{2} when ± is plus. Add 4 to 4\sqrt{11}.
x=2\sqrt{11}+2
Divide 4+4\sqrt{11} by 2.
x=\frac{4-4\sqrt{11}}{2}
Now solve the equation x=\frac{4±4\sqrt{11}}{2} when ± is minus. Subtract 4\sqrt{11} from 4.
x=2-2\sqrt{11}
Divide 4-4\sqrt{11} by 2.
x^{2}-4x-40=\left(x-\left(2\sqrt{11}+2\right)\right)\left(x-\left(2-2\sqrt{11}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2+2\sqrt{11} for x_{1} and 2-2\sqrt{11} for x_{2}.
x^{2}-4x-40
Multiply 5 and 8 to get 40.