Solve for x
x = \frac{\sqrt{19} + 3}{2} \approx 3.679449472
x=\frac{3-\sqrt{19}}{2}\approx -0.679449472
Graph
Share
Copied to clipboard
x^{2}-4x-5+x^{2}=2x
Add x^{2} to both sides.
2x^{2}-4x-5=2x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-4x-5-2x=0
Subtract 2x from both sides.
2x^{2}-6x-5=0
Combine -4x and -2x to get -6x.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-5\right)}}{2\times 2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-8\left(-5\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-6\right)±\sqrt{36+40}}{2\times 2}
Multiply -8 times -5.
x=\frac{-\left(-6\right)±\sqrt{76}}{2\times 2}
Add 36 to 40.
x=\frac{-\left(-6\right)±2\sqrt{19}}{2\times 2}
Take the square root of 76.
x=\frac{6±2\sqrt{19}}{2\times 2}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{19}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{19}+6}{4}
Now solve the equation x=\frac{6±2\sqrt{19}}{4} when ± is plus. Add 6 to 2\sqrt{19}.
x=\frac{\sqrt{19}+3}{2}
Divide 6+2\sqrt{19} by 4.
x=\frac{6-2\sqrt{19}}{4}
Now solve the equation x=\frac{6±2\sqrt{19}}{4} when ± is minus. Subtract 2\sqrt{19} from 6.
x=\frac{3-\sqrt{19}}{2}
Divide 6-2\sqrt{19} by 4.
x=\frac{\sqrt{19}+3}{2} x=\frac{3-\sqrt{19}}{2}
The equation is now solved.
x^{2}-4x-5+x^{2}=2x
Add x^{2} to both sides.
2x^{2}-4x-5=2x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-4x-5-2x=0
Subtract 2x from both sides.
2x^{2}-6x-5=0
Combine -4x and -2x to get -6x.
2x^{2}-6x=5
Add 5 to both sides. Anything plus zero gives itself.
\frac{2x^{2}-6x}{2}=\frac{5}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-3x=\frac{5}{2}
Divide -6 by 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{5}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{19}{4}
Add \frac{5}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{19}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{19}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{19}}{2} x-\frac{3}{2}=-\frac{\sqrt{19}}{2}
Simplify.
x=\frac{\sqrt{19}+3}{2} x=\frac{3-\sqrt{19}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}