Evaluate
5x^{2}-16x+6
Factor
5\left(x-\frac{8-\sqrt{34}}{5}\right)\left(x-\frac{\sqrt{34}+8}{5}\right)
Graph
Share
Copied to clipboard
5x^{2}-4x-4\times 3x+6
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}-4x-12x+6
Multiply 4 and 3 to get 12.
5x^{2}-16x+6
Combine -4x and -12x to get -16x.
factor(5x^{2}-4x-4\times 3x+6)
Combine x^{2} and 4x^{2} to get 5x^{2}.
factor(5x^{2}-4x-12x+6)
Multiply 4 and 3 to get 12.
factor(5x^{2}-16x+6)
Combine -4x and -12x to get -16x.
5x^{2}-16x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 5\times 6}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 5\times 6}}{2\times 5}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-20\times 6}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-16\right)±\sqrt{256-120}}{2\times 5}
Multiply -20 times 6.
x=\frac{-\left(-16\right)±\sqrt{136}}{2\times 5}
Add 256 to -120.
x=\frac{-\left(-16\right)±2\sqrt{34}}{2\times 5}
Take the square root of 136.
x=\frac{16±2\sqrt{34}}{2\times 5}
The opposite of -16 is 16.
x=\frac{16±2\sqrt{34}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{34}+16}{10}
Now solve the equation x=\frac{16±2\sqrt{34}}{10} when ± is plus. Add 16 to 2\sqrt{34}.
x=\frac{\sqrt{34}+8}{5}
Divide 16+2\sqrt{34} by 10.
x=\frac{16-2\sqrt{34}}{10}
Now solve the equation x=\frac{16±2\sqrt{34}}{10} when ± is minus. Subtract 2\sqrt{34} from 16.
x=\frac{8-\sqrt{34}}{5}
Divide 16-2\sqrt{34} by 10.
5x^{2}-16x+6=5\left(x-\frac{\sqrt{34}+8}{5}\right)\left(x-\frac{8-\sqrt{34}}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{8+\sqrt{34}}{5} for x_{1} and \frac{8-\sqrt{34}}{5} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}