Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-4x-42=0
Combine x^{2} and 2x^{2} to get 3x^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-42\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -4 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-42\right)}}{2\times 3}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-42\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-4\right)±\sqrt{16+504}}{2\times 3}
Multiply -12 times -42.
x=\frac{-\left(-4\right)±\sqrt{520}}{2\times 3}
Add 16 to 504.
x=\frac{-\left(-4\right)±2\sqrt{130}}{2\times 3}
Take the square root of 520.
x=\frac{4±2\sqrt{130}}{2\times 3}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{130}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{130}+4}{6}
Now solve the equation x=\frac{4±2\sqrt{130}}{6} when ± is plus. Add 4 to 2\sqrt{130}.
x=\frac{\sqrt{130}+2}{3}
Divide 4+2\sqrt{130} by 6.
x=\frac{4-2\sqrt{130}}{6}
Now solve the equation x=\frac{4±2\sqrt{130}}{6} when ± is minus. Subtract 2\sqrt{130} from 4.
x=\frac{2-\sqrt{130}}{3}
Divide 4-2\sqrt{130} by 6.
x=\frac{\sqrt{130}+2}{3} x=\frac{2-\sqrt{130}}{3}
The equation is now solved.
3x^{2}-4x-42=0
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-4x=42
Add 42 to both sides. Anything plus zero gives itself.
\frac{3x^{2}-4x}{3}=\frac{42}{3}
Divide both sides by 3.
x^{2}-\frac{4}{3}x=\frac{42}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{4}{3}x=14
Divide 42 by 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=14+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=14+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{130}{9}
Add 14 to \frac{4}{9}.
\left(x-\frac{2}{3}\right)^{2}=\frac{130}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{130}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{\sqrt{130}}{3} x-\frac{2}{3}=-\frac{\sqrt{130}}{3}
Simplify.
x=\frac{\sqrt{130}+2}{3} x=\frac{2-\sqrt{130}}{3}
Add \frac{2}{3} to both sides of the equation.