Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x^{2}+20x-24=0
Use the distributive property to multiply -4 by x^{2}-5x+6.
-3x^{2}+20x-24=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-20±\sqrt{20^{2}-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 20 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
Square 20.
x=\frac{-20±\sqrt{400+12\left(-24\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-20±\sqrt{400-288}}{2\left(-3\right)}
Multiply 12 times -24.
x=\frac{-20±\sqrt{112}}{2\left(-3\right)}
Add 400 to -288.
x=\frac{-20±4\sqrt{7}}{2\left(-3\right)}
Take the square root of 112.
x=\frac{-20±4\sqrt{7}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{7}-20}{-6}
Now solve the equation x=\frac{-20±4\sqrt{7}}{-6} when ± is plus. Add -20 to 4\sqrt{7}.
x=\frac{10-2\sqrt{7}}{3}
Divide -20+4\sqrt{7} by -6.
x=\frac{-4\sqrt{7}-20}{-6}
Now solve the equation x=\frac{-20±4\sqrt{7}}{-6} when ± is minus. Subtract 4\sqrt{7} from -20.
x=\frac{2\sqrt{7}+10}{3}
Divide -20-4\sqrt{7} by -6.
x=\frac{10-2\sqrt{7}}{3} x=\frac{2\sqrt{7}+10}{3}
The equation is now solved.
x^{2}-4x^{2}+20x-24=0
Use the distributive property to multiply -4 by x^{2}-5x+6.
-3x^{2}+20x-24=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+20x=24
Add 24 to both sides. Anything plus zero gives itself.
\frac{-3x^{2}+20x}{-3}=\frac{24}{-3}
Divide both sides by -3.
x^{2}+\frac{20}{-3}x=\frac{24}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{20}{3}x=\frac{24}{-3}
Divide 20 by -3.
x^{2}-\frac{20}{3}x=-8
Divide 24 by -3.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-8+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-8+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{28}{9}
Add -8 to \frac{100}{9}.
\left(x-\frac{10}{3}\right)^{2}=\frac{28}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{28}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{2\sqrt{7}}{3} x-\frac{10}{3}=-\frac{2\sqrt{7}}{3}
Simplify.
x=\frac{2\sqrt{7}+10}{3} x=\frac{10-2\sqrt{7}}{3}
Add \frac{10}{3} to both sides of the equation.