Solve for x (complex solution)
x=\frac{-6\sqrt{26}i-18}{35}\approx -0.514285714-0.874117631i
x=1
x=\frac{-18+6\sqrt{26}i}{35}\approx -0.514285714+0.874117631i
Solve for x
x=1
Graph
Share
Copied to clipboard
x^{2}-36=x^{2}\left(-35\right)x
Combine x and -36x to get -35x.
x^{2}-36=x^{3}\left(-35\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{2}-36-x^{3}\left(-35\right)=0
Subtract x^{3}\left(-35\right) from both sides.
x^{2}-36+35x^{3}=0
Multiply -1 and -35 to get 35.
35x^{3}+x^{2}-36=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{36}{35},±\frac{36}{7},±\frac{36}{5},±36,±\frac{18}{35},±\frac{18}{7},±\frac{18}{5},±18,±\frac{12}{35},±\frac{12}{7},±\frac{12}{5},±12,±\frac{9}{35},±\frac{9}{7},±\frac{9}{5},±9,±\frac{6}{35},±\frac{6}{7},±\frac{6}{5},±6,±\frac{4}{35},±\frac{4}{7},±\frac{4}{5},±4,±\frac{3}{35},±\frac{3}{7},±\frac{3}{5},±3,±\frac{2}{35},±\frac{2}{7},±\frac{2}{5},±2,±\frac{1}{35},±\frac{1}{7},±\frac{1}{5},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -36 and q divides the leading coefficient 35. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
35x^{2}+36x+36=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 35x^{3}+x^{2}-36 by x-1 to get 35x^{2}+36x+36. Solve the equation where the result equals to 0.
x=\frac{-36±\sqrt{36^{2}-4\times 35\times 36}}{2\times 35}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 35 for a, 36 for b, and 36 for c in the quadratic formula.
x=\frac{-36±\sqrt{-3744}}{70}
Do the calculations.
x=\frac{-6i\sqrt{26}-18}{35} x=\frac{-18+6i\sqrt{26}}{35}
Solve the equation 35x^{2}+36x+36=0 when ± is plus and when ± is minus.
x=1 x=\frac{-6i\sqrt{26}-18}{35} x=\frac{-18+6i\sqrt{26}}{35}
List all found solutions.
x^{2}-36=x^{2}\left(-35\right)x
Combine x and -36x to get -35x.
x^{2}-36=x^{3}\left(-35\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{2}-36-x^{3}\left(-35\right)=0
Subtract x^{3}\left(-35\right) from both sides.
x^{2}-36+35x^{3}=0
Multiply -1 and -35 to get 35.
35x^{3}+x^{2}-36=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{36}{35},±\frac{36}{7},±\frac{36}{5},±36,±\frac{18}{35},±\frac{18}{7},±\frac{18}{5},±18,±\frac{12}{35},±\frac{12}{7},±\frac{12}{5},±12,±\frac{9}{35},±\frac{9}{7},±\frac{9}{5},±9,±\frac{6}{35},±\frac{6}{7},±\frac{6}{5},±6,±\frac{4}{35},±\frac{4}{7},±\frac{4}{5},±4,±\frac{3}{35},±\frac{3}{7},±\frac{3}{5},±3,±\frac{2}{35},±\frac{2}{7},±\frac{2}{5},±2,±\frac{1}{35},±\frac{1}{7},±\frac{1}{5},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -36 and q divides the leading coefficient 35. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
35x^{2}+36x+36=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 35x^{3}+x^{2}-36 by x-1 to get 35x^{2}+36x+36. Solve the equation where the result equals to 0.
x=\frac{-36±\sqrt{36^{2}-4\times 35\times 36}}{2\times 35}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 35 for a, 36 for b, and 36 for c in the quadratic formula.
x=\frac{-36±\sqrt{-3744}}{70}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=1
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}