Solve for x
x=\frac{\sqrt{11397}}{6}+\frac{35}{2}\approx 35.292788801
x=-\frac{\sqrt{11397}}{6}+\frac{35}{2}\approx -0.292788801
Graph
Share
Copied to clipboard
x^{2}-35x-10=\frac{1}{3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-35x-10-\frac{1}{3}=\frac{1}{3}-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
x^{2}-35x-10-\frac{1}{3}=0
Subtracting \frac{1}{3} from itself leaves 0.
x^{2}-35x-\frac{31}{3}=0
Subtract \frac{1}{3} from -10.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\left(-\frac{31}{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -35 for b, and -\frac{31}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\left(-\frac{31}{3}\right)}}{2}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225+\frac{124}{3}}}{2}
Multiply -4 times -\frac{31}{3}.
x=\frac{-\left(-35\right)±\sqrt{\frac{3799}{3}}}{2}
Add 1225 to \frac{124}{3}.
x=\frac{-\left(-35\right)±\frac{\sqrt{11397}}{3}}{2}
Take the square root of \frac{3799}{3}.
x=\frac{35±\frac{\sqrt{11397}}{3}}{2}
The opposite of -35 is 35.
x=\frac{\frac{\sqrt{11397}}{3}+35}{2}
Now solve the equation x=\frac{35±\frac{\sqrt{11397}}{3}}{2} when ± is plus. Add 35 to \frac{\sqrt{11397}}{3}.
x=\frac{\sqrt{11397}}{6}+\frac{35}{2}
Divide 35+\frac{\sqrt{11397}}{3} by 2.
x=\frac{-\frac{\sqrt{11397}}{3}+35}{2}
Now solve the equation x=\frac{35±\frac{\sqrt{11397}}{3}}{2} when ± is minus. Subtract \frac{\sqrt{11397}}{3} from 35.
x=-\frac{\sqrt{11397}}{6}+\frac{35}{2}
Divide 35-\frac{\sqrt{11397}}{3} by 2.
x=\frac{\sqrt{11397}}{6}+\frac{35}{2} x=-\frac{\sqrt{11397}}{6}+\frac{35}{2}
The equation is now solved.
x^{2}-35x-10=\frac{1}{3}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-35x-10-\left(-10\right)=\frac{1}{3}-\left(-10\right)
Add 10 to both sides of the equation.
x^{2}-35x=\frac{1}{3}-\left(-10\right)
Subtracting -10 from itself leaves 0.
x^{2}-35x=\frac{31}{3}
Subtract -10 from \frac{1}{3}.
x^{2}-35x+\left(-\frac{35}{2}\right)^{2}=\frac{31}{3}+\left(-\frac{35}{2}\right)^{2}
Divide -35, the coefficient of the x term, by 2 to get -\frac{35}{2}. Then add the square of -\frac{35}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-35x+\frac{1225}{4}=\frac{31}{3}+\frac{1225}{4}
Square -\frac{35}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-35x+\frac{1225}{4}=\frac{3799}{12}
Add \frac{31}{3} to \frac{1225}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{2}\right)^{2}=\frac{3799}{12}
Factor x^{2}-35x+\frac{1225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{2}\right)^{2}}=\sqrt{\frac{3799}{12}}
Take the square root of both sides of the equation.
x-\frac{35}{2}=\frac{\sqrt{11397}}{6} x-\frac{35}{2}=-\frac{\sqrt{11397}}{6}
Simplify.
x=\frac{\sqrt{11397}}{6}+\frac{35}{2} x=-\frac{\sqrt{11397}}{6}+\frac{35}{2}
Add \frac{35}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}