Factor
\left(x-36\right)\left(x+4\right)
Evaluate
\left(x-36\right)\left(x+4\right)
Graph
Share
Copied to clipboard
a+b=-32 ab=1\left(-144\right)=-144
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-144. To find a and b, set up a system to be solved.
1,-144 2,-72 3,-48 4,-36 6,-24 8,-18 9,-16 12,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -144.
1-144=-143 2-72=-70 3-48=-45 4-36=-32 6-24=-18 8-18=-10 9-16=-7 12-12=0
Calculate the sum for each pair.
a=-36 b=4
The solution is the pair that gives sum -32.
\left(x^{2}-36x\right)+\left(4x-144\right)
Rewrite x^{2}-32x-144 as \left(x^{2}-36x\right)+\left(4x-144\right).
x\left(x-36\right)+4\left(x-36\right)
Factor out x in the first and 4 in the second group.
\left(x-36\right)\left(x+4\right)
Factor out common term x-36 by using distributive property.
x^{2}-32x-144=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\left(-144\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{1024-4\left(-144\right)}}{2}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024+576}}{2}
Multiply -4 times -144.
x=\frac{-\left(-32\right)±\sqrt{1600}}{2}
Add 1024 to 576.
x=\frac{-\left(-32\right)±40}{2}
Take the square root of 1600.
x=\frac{32±40}{2}
The opposite of -32 is 32.
x=\frac{72}{2}
Now solve the equation x=\frac{32±40}{2} when ± is plus. Add 32 to 40.
x=36
Divide 72 by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{32±40}{2} when ± is minus. Subtract 40 from 32.
x=-4
Divide -8 by 2.
x^{2}-32x-144=\left(x-36\right)\left(x-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 36 for x_{1} and -4 for x_{2}.
x^{2}-32x-144=\left(x-36\right)\left(x+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 -32x -144 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 32 rs = -144
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 16 - u s = 16 + u
Two numbers r and s sum up to 32 exactly when the average of the two numbers is \frac{1}{2}*32 = 16. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(16 - u) (16 + u) = -144
To solve for unknown quantity u, substitute these in the product equation rs = -144
256 - u^2 = -144
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -144-256 = -400
Simplify the expression by subtracting 256 on both sides
u^2 = 400 u = \pm\sqrt{400} = \pm 20
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =16 - 20 = -4 s = 16 + 20 = 36
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}