Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-32x+72=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 72}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 72}}{2}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-288}}{2}
Multiply -4 times 72.
x=\frac{-\left(-32\right)±\sqrt{736}}{2}
Add 1024 to -288.
x=\frac{-\left(-32\right)±4\sqrt{46}}{2}
Take the square root of 736.
x=\frac{32±4\sqrt{46}}{2}
The opposite of -32 is 32.
x=\frac{4\sqrt{46}+32}{2}
Now solve the equation x=\frac{32±4\sqrt{46}}{2} when ± is plus. Add 32 to 4\sqrt{46}.
x=2\sqrt{46}+16
Divide 32+4\sqrt{46} by 2.
x=\frac{32-4\sqrt{46}}{2}
Now solve the equation x=\frac{32±4\sqrt{46}}{2} when ± is minus. Subtract 4\sqrt{46} from 32.
x=16-2\sqrt{46}
Divide 32-4\sqrt{46} by 2.
x^{2}-32x+72=\left(x-\left(2\sqrt{46}+16\right)\right)\left(x-\left(16-2\sqrt{46}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 16+2\sqrt{46} for x_{1} and 16-2\sqrt{46} for x_{2}.
x ^ 2 -32x +72 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 32 rs = 72
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 16 - u s = 16 + u
Two numbers r and s sum up to 32 exactly when the average of the two numbers is \frac{1}{2}*32 = 16. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(16 - u) (16 + u) = 72
To solve for unknown quantity u, substitute these in the product equation rs = 72
256 - u^2 = 72
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 72-256 = -184
Simplify the expression by subtracting 256 on both sides
u^2 = 184 u = \pm\sqrt{184} = \pm \sqrt{184}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =16 - \sqrt{184} = 2.435 s = 16 + \sqrt{184} = 29.565
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.