x ^ { 2 } - 3,2 x + 2,4 = 0
Solve for x
x=2
x=1,2
Graph
Share
Copied to clipboard
x^{2}-3,2x+2,4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3,2\right)±\sqrt{\left(-3,2\right)^{2}-4\times 2,4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3,2 for b, and 2,4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3,2\right)±\sqrt{10,24-4\times 2,4}}{2}
Square -3,2 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-3,2\right)±\sqrt{10,24-9,6}}{2}
Multiply -4 times 2,4.
x=\frac{-\left(-3,2\right)±\sqrt{0,64}}{2}
Add 10,24 to -9,6 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-3,2\right)±\frac{4}{5}}{2}
Take the square root of 0,64.
x=\frac{3,2±\frac{4}{5}}{2}
The opposite of -3,2 is 3,2.
x=\frac{4}{2}
Now solve the equation x=\frac{3,2±\frac{4}{5}}{2} when ± is plus. Add 3,2 to \frac{4}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=2
Divide 4 by 2.
x=\frac{\frac{12}{5}}{2}
Now solve the equation x=\frac{3,2±\frac{4}{5}}{2} when ± is minus. Subtract \frac{4}{5} from 3,2 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{6}{5}
Divide \frac{12}{5} by 2.
x=2 x=\frac{6}{5}
The equation is now solved.
x^{2}-3,2x+2,4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-3,2x+2,4-2,4=-2,4
Subtract 2,4 from both sides of the equation.
x^{2}-3,2x=-2,4
Subtracting 2,4 from itself leaves 0.
x^{2}-3,2x+\left(-1,6\right)^{2}=-2,4+\left(-1,6\right)^{2}
Divide -3,2, the coefficient of the x term, by 2 to get -1,6. Then add the square of -1,6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3,2x+2,56=-2,4+2,56
Square -1,6 by squaring both the numerator and the denominator of the fraction.
x^{2}-3,2x+2,56=0,16
Add -2,4 to 2,56 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-1,6\right)^{2}=0,16
Factor x^{2}-3,2x+2,56. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1,6\right)^{2}}=\sqrt{0,16}
Take the square root of both sides of the equation.
x-1,6=\frac{2}{5} x-1,6=-\frac{2}{5}
Simplify.
x=2 x=\frac{6}{5}
Add 1,6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}