Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3x-2\left(x^{2}-6x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-3x-2x^{2}+12x-18=0
Use the distributive property to multiply -2 by x^{2}-6x+9.
-x^{2}-3x+12x-18=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+9x-18=0
Combine -3x and 12x to get 9x.
a+b=9 ab=-\left(-18\right)=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
1,18 2,9 3,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 18.
1+18=19 2+9=11 3+6=9
Calculate the sum for each pair.
a=6 b=3
The solution is the pair that gives sum 9.
\left(-x^{2}+6x\right)+\left(3x-18\right)
Rewrite -x^{2}+9x-18 as \left(-x^{2}+6x\right)+\left(3x-18\right).
-x\left(x-6\right)+3\left(x-6\right)
Factor out -x in the first and 3 in the second group.
\left(x-6\right)\left(-x+3\right)
Factor out common term x-6 by using distributive property.
x=6 x=3
To find equation solutions, solve x-6=0 and -x+3=0.
x^{2}-3x-2\left(x^{2}-6x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-3x-2x^{2}+12x-18=0
Use the distributive property to multiply -2 by x^{2}-6x+9.
-x^{2}-3x+12x-18=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+9x-18=0
Combine -3x and 12x to get 9x.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\left(-18\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81-72}}{2\left(-1\right)}
Multiply 4 times -18.
x=\frac{-9±\sqrt{9}}{2\left(-1\right)}
Add 81 to -72.
x=\frac{-9±3}{2\left(-1\right)}
Take the square root of 9.
x=\frac{-9±3}{-2}
Multiply 2 times -1.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-9±3}{-2} when ± is plus. Add -9 to 3.
x=3
Divide -6 by -2.
x=-\frac{12}{-2}
Now solve the equation x=\frac{-9±3}{-2} when ± is minus. Subtract 3 from -9.
x=6
Divide -12 by -2.
x=3 x=6
The equation is now solved.
x^{2}-3x-2\left(x^{2}-6x+9\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-3x-2x^{2}+12x-18=0
Use the distributive property to multiply -2 by x^{2}-6x+9.
-x^{2}-3x+12x-18=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+9x-18=0
Combine -3x and 12x to get 9x.
-x^{2}+9x=18
Add 18 to both sides. Anything plus zero gives itself.
\frac{-x^{2}+9x}{-1}=\frac{18}{-1}
Divide both sides by -1.
x^{2}+\frac{9}{-1}x=\frac{18}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-9x=\frac{18}{-1}
Divide 9 by -1.
x^{2}-9x=-18
Divide 18 by -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-18+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-18+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{9}{4}
Add -18 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{3}{2} x-\frac{9}{2}=-\frac{3}{2}
Simplify.
x=6 x=3
Add \frac{9}{2} to both sides of the equation.