Solve for x (complex solution)
x=-\frac{7\sqrt{15}i}{20}-\frac{1}{4}\approx -0.25-1.355544171i
x=\frac{7\sqrt{15}i}{20}-\frac{1}{4}\approx -0.25+1.355544171i
Graph
Share
Copied to clipboard
2x^{2}-3x+11-4x+1=12x^{2}-2x+31
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-7x+11+1=12x^{2}-2x+31
Combine -3x and -4x to get -7x.
2x^{2}-7x+12=12x^{2}-2x+31
Add 11 and 1 to get 12.
2x^{2}-7x+12-12x^{2}=-2x+31
Subtract 12x^{2} from both sides.
-10x^{2}-7x+12=-2x+31
Combine 2x^{2} and -12x^{2} to get -10x^{2}.
-10x^{2}-7x+12+2x=31
Add 2x to both sides.
-10x^{2}-5x+12=31
Combine -7x and 2x to get -5x.
-10x^{2}-5x+12-31=0
Subtract 31 from both sides.
-10x^{2}-5x-19=0
Subtract 31 from 12 to get -19.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-10\right)\left(-19\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, -5 for b, and -19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-10\right)\left(-19\right)}}{2\left(-10\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+40\left(-19\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-\left(-5\right)±\sqrt{25-760}}{2\left(-10\right)}
Multiply 40 times -19.
x=\frac{-\left(-5\right)±\sqrt{-735}}{2\left(-10\right)}
Add 25 to -760.
x=\frac{-\left(-5\right)±7\sqrt{15}i}{2\left(-10\right)}
Take the square root of -735.
x=\frac{5±7\sqrt{15}i}{2\left(-10\right)}
The opposite of -5 is 5.
x=\frac{5±7\sqrt{15}i}{-20}
Multiply 2 times -10.
x=\frac{5+7\sqrt{15}i}{-20}
Now solve the equation x=\frac{5±7\sqrt{15}i}{-20} when ± is plus. Add 5 to 7i\sqrt{15}.
x=-\frac{7\sqrt{15}i}{20}-\frac{1}{4}
Divide 5+7i\sqrt{15} by -20.
x=\frac{-7\sqrt{15}i+5}{-20}
Now solve the equation x=\frac{5±7\sqrt{15}i}{-20} when ± is minus. Subtract 7i\sqrt{15} from 5.
x=\frac{7\sqrt{15}i}{20}-\frac{1}{4}
Divide 5-7i\sqrt{15} by -20.
x=-\frac{7\sqrt{15}i}{20}-\frac{1}{4} x=\frac{7\sqrt{15}i}{20}-\frac{1}{4}
The equation is now solved.
2x^{2}-3x+11-4x+1=12x^{2}-2x+31
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-7x+11+1=12x^{2}-2x+31
Combine -3x and -4x to get -7x.
2x^{2}-7x+12=12x^{2}-2x+31
Add 11 and 1 to get 12.
2x^{2}-7x+12-12x^{2}=-2x+31
Subtract 12x^{2} from both sides.
-10x^{2}-7x+12=-2x+31
Combine 2x^{2} and -12x^{2} to get -10x^{2}.
-10x^{2}-7x+12+2x=31
Add 2x to both sides.
-10x^{2}-5x+12=31
Combine -7x and 2x to get -5x.
-10x^{2}-5x=31-12
Subtract 12 from both sides.
-10x^{2}-5x=19
Subtract 12 from 31 to get 19.
\frac{-10x^{2}-5x}{-10}=\frac{19}{-10}
Divide both sides by -10.
x^{2}+\left(-\frac{5}{-10}\right)x=\frac{19}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}+\frac{1}{2}x=\frac{19}{-10}
Reduce the fraction \frac{-5}{-10} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{1}{2}x=-\frac{19}{10}
Divide 19 by -10.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{19}{10}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{19}{10}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{147}{80}
Add -\frac{19}{10} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=-\frac{147}{80}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{147}{80}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{7\sqrt{15}i}{20} x+\frac{1}{4}=-\frac{7\sqrt{15}i}{20}
Simplify.
x=\frac{7\sqrt{15}i}{20}-\frac{1}{4} x=-\frac{7\sqrt{15}i}{20}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}