Solve for k
k=-\frac{x^{2}+6}{1-3x}
x\neq \frac{1}{3}
Solve for x (complex solution)
x=\frac{\sqrt{9k^{2}-4k-24}+3k}{2}
x=\frac{-\sqrt{9k^{2}-4k-24}+3k}{2}
Solve for x
x=\frac{\sqrt{9k^{2}-4k-24}+3k}{2}
x=\frac{-\sqrt{9k^{2}-4k-24}+3k}{2}\text{, }k\geq \frac{2\sqrt{55}+2}{9}\text{ or }k\leq \frac{2-2\sqrt{55}}{9}
Graph
Share
Copied to clipboard
x^{2}-3kx+k+6=0
Multiply 0 and 0 to get 0.
-3kx+k+6=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-3kx+k=-x^{2}-6
Subtract 6 from both sides.
\left(-3x+1\right)k=-x^{2}-6
Combine all terms containing k.
\left(1-3x\right)k=-x^{2}-6
The equation is in standard form.
\frac{\left(1-3x\right)k}{1-3x}=\frac{-x^{2}-6}{1-3x}
Divide both sides by -3x+1.
k=\frac{-x^{2}-6}{1-3x}
Dividing by -3x+1 undoes the multiplication by -3x+1.
k=-\frac{x^{2}+6}{1-3x}
Divide -x^{2}-6 by -3x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}