Solve for x
x=-4
x=4
x=2
x=-2
Graph
Share
Copied to clipboard
-3\sqrt{2x^{2}-7}=1-x^{2}
Subtract x^{2} from both sides of the equation.
\left(-3\sqrt{2x^{2}-7}\right)^{2}=\left(1-x^{2}\right)^{2}
Square both sides of the equation.
\left(-3\right)^{2}\left(\sqrt{2x^{2}-7}\right)^{2}=\left(1-x^{2}\right)^{2}
Expand \left(-3\sqrt{2x^{2}-7}\right)^{2}.
9\left(\sqrt{2x^{2}-7}\right)^{2}=\left(1-x^{2}\right)^{2}
Calculate -3 to the power of 2 and get 9.
9\left(2x^{2}-7\right)=\left(1-x^{2}\right)^{2}
Calculate \sqrt{2x^{2}-7} to the power of 2 and get 2x^{2}-7.
18x^{2}-63=\left(1-x^{2}\right)^{2}
Use the distributive property to multiply 9 by 2x^{2}-7.
18x^{2}-63=1-2x^{2}+\left(x^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x^{2}\right)^{2}.
18x^{2}-63=1-2x^{2}+x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
18x^{2}-63-1=-2x^{2}+x^{4}
Subtract 1 from both sides.
18x^{2}-64=-2x^{2}+x^{4}
Subtract 1 from -63 to get -64.
18x^{2}-64+2x^{2}=x^{4}
Add 2x^{2} to both sides.
20x^{2}-64=x^{4}
Combine 18x^{2} and 2x^{2} to get 20x^{2}.
20x^{2}-64-x^{4}=0
Subtract x^{4} from both sides.
-t^{2}+20t-64=0
Substitute t for x^{2}.
t=\frac{-20±\sqrt{20^{2}-4\left(-1\right)\left(-64\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 20 for b, and -64 for c in the quadratic formula.
t=\frac{-20±12}{-2}
Do the calculations.
t=4 t=16
Solve the equation t=\frac{-20±12}{-2} when ± is plus and when ± is minus.
x=2 x=-2 x=4 x=-4
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
2^{2}-3\sqrt{2\times 2^{2}-7}=1
Substitute 2 for x in the equation x^{2}-3\sqrt{2x^{2}-7}=1.
1=1
Simplify. The value x=2 satisfies the equation.
\left(-2\right)^{2}-3\sqrt{2\left(-2\right)^{2}-7}=1
Substitute -2 for x in the equation x^{2}-3\sqrt{2x^{2}-7}=1.
1=1
Simplify. The value x=-2 satisfies the equation.
4^{2}-3\sqrt{2\times 4^{2}-7}=1
Substitute 4 for x in the equation x^{2}-3\sqrt{2x^{2}-7}=1.
1=1
Simplify. The value x=4 satisfies the equation.
\left(-4\right)^{2}-3\sqrt{2\left(-4\right)^{2}-7}=1
Substitute -4 for x in the equation x^{2}-3\sqrt{2x^{2}-7}=1.
1=1
Simplify. The value x=-4 satisfies the equation.
x=2 x=-2 x=4 x=-4
List all solutions of -3\sqrt{2x^{2}-7}=1-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}