Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x-24\right)
Factor out x.
x^{2}-24x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±24}{2}
Take the square root of \left(-24\right)^{2}.
x=\frac{24±24}{2}
The opposite of -24 is 24.
x=\frac{48}{2}
Now solve the equation x=\frac{24±24}{2} when ± is plus. Add 24 to 24.
x=24
Divide 48 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{24±24}{2} when ± is minus. Subtract 24 from 24.
x=0
Divide 0 by 2.
x^{2}-24x=\left(x-24\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 24 for x_{1} and 0 for x_{2}.