Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+0
Multiply -1 and 0 to get 0.
x^{2}-2x
Anything plus zero gives itself.
x ^ 2 -2x +0 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 2 rs = 0
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1 - u s = 1 + u
Two numbers r and s sum up to 2 exactly when the average of the two numbers is \frac{1}{2}*2 = 1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1 - u) (1 + u) = 0
To solve for unknown quantity u, substitute these in the product equation rs = 0
1 - u^2 = 0
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 0-1 = -1
Simplify the expression by subtracting 1 on both sides
u^2 = 1 u = \pm\sqrt{1} = \pm 1
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1 - 1 = 0 s = 1 + 1 = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
x\left(x-2\right)
Factor out x.
x^{2}-2x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±2}{2}
Take the square root of \left(-2\right)^{2}.
x=\frac{2±2}{2}
The opposite of -2 is 2.
x=\frac{4}{2}
Now solve the equation x=\frac{2±2}{2} when ± is plus. Add 2 to 2.
x=2
Divide 4 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{2±2}{2} when ± is minus. Subtract 2 from 2.
x=0
Divide 0 by 2.
x^{2}-2x=\left(x-2\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 0 for x_{2}.