Evaluate
-x^{2}+2+\frac{1}{x}
Expand
-x^{2}+2+\frac{1}{x}
Graph
Share
Copied to clipboard
x^{2}-2x\left(\frac{xx}{x}-\frac{1}{x}\right)+x\times \frac{1}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
x^{2}-2x\times \frac{xx-1}{x}+x\times \frac{1}{x^{2}}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
x^{2}-2x\times \frac{x^{2}-1}{x}+x\times \frac{1}{x^{2}}
Do the multiplications in xx-1.
x^{2}-\frac{2\left(x^{2}-1\right)}{x}x+x\times \frac{1}{x^{2}}
Express 2\times \frac{x^{2}-1}{x} as a single fraction.
x^{2}-\frac{2\left(x^{2}-1\right)}{x}x+\frac{x}{x^{2}}
Express x\times \frac{1}{x^{2}} as a single fraction.
x^{2}-\frac{2\left(x^{2}-1\right)}{x}x+\frac{1}{x}
Cancel out x in both numerator and denominator.
x^{2}-\frac{2x^{2}-2}{x}x+\frac{1}{x}
Use the distributive property to multiply 2 by x^{2}-1.
x^{2}-\left(2x^{2}-2\right)+\frac{1}{x}
Cancel out x and x.
x^{2}-2x^{2}+2+\frac{1}{x}
To find the opposite of 2x^{2}-2, find the opposite of each term.
-x^{2}+2+\frac{1}{x}
Combine x^{2} and -2x^{2} to get -x^{2}.
\frac{\left(-x^{2}+2\right)x}{x}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}+2 times \frac{x}{x}.
\frac{\left(-x^{2}+2\right)x+1}{x}
Since \frac{\left(-x^{2}+2\right)x}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{-x^{3}+2x+1}{x}
Do the multiplications in \left(-x^{2}+2\right)x+1.
x^{2}-2x\left(\frac{xx}{x}-\frac{1}{x}\right)+x\times \frac{1}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
x^{2}-2x\times \frac{xx-1}{x}+x\times \frac{1}{x^{2}}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
x^{2}-2x\times \frac{x^{2}-1}{x}+x\times \frac{1}{x^{2}}
Do the multiplications in xx-1.
x^{2}-\frac{2\left(x^{2}-1\right)}{x}x+x\times \frac{1}{x^{2}}
Express 2\times \frac{x^{2}-1}{x} as a single fraction.
x^{2}-\frac{2\left(x^{2}-1\right)}{x}x+\frac{x}{x^{2}}
Express x\times \frac{1}{x^{2}} as a single fraction.
x^{2}-\frac{2\left(x^{2}-1\right)}{x}x+\frac{1}{x}
Cancel out x in both numerator and denominator.
x^{2}-\frac{2x^{2}-2}{x}x+\frac{1}{x}
Use the distributive property to multiply 2 by x^{2}-1.
x^{2}-\left(2x^{2}-2\right)+\frac{1}{x}
Cancel out x and x.
x^{2}-2x^{2}+2+\frac{1}{x}
To find the opposite of 2x^{2}-2, find the opposite of each term.
-x^{2}+2+\frac{1}{x}
Combine x^{2} and -2x^{2} to get -x^{2}.
\frac{\left(-x^{2}+2\right)x}{x}+\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}+2 times \frac{x}{x}.
\frac{\left(-x^{2}+2\right)x+1}{x}
Since \frac{\left(-x^{2}+2\right)x}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{-x^{3}+2x+1}{x}
Do the multiplications in \left(-x^{2}+2\right)x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}