Solve for x
x=20000\sqrt{22}+100000\approx 193808.315196469
x=100000-20000\sqrt{22}\approx 6191.684803531
Graph
Share
Copied to clipboard
x^{2}-2x\times 100000+12\times 10^{8}=0
Calculate 10 to the power of 5 and get 100000.
x^{2}-200000x+12\times 10^{8}=0
Multiply 2 and 100000 to get 200000.
x^{2}-200000x+12\times 100000000=0
Calculate 10 to the power of 8 and get 100000000.
x^{2}-200000x+1200000000=0
Multiply 12 and 100000000 to get 1200000000.
x=\frac{-\left(-200000\right)±\sqrt{\left(-200000\right)^{2}-4\times 1200000000}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -200000 for b, and 1200000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200000\right)±\sqrt{40000000000-4\times 1200000000}}{2}
Square -200000.
x=\frac{-\left(-200000\right)±\sqrt{40000000000-4800000000}}{2}
Multiply -4 times 1200000000.
x=\frac{-\left(-200000\right)±\sqrt{35200000000}}{2}
Add 40000000000 to -4800000000.
x=\frac{-\left(-200000\right)±40000\sqrt{22}}{2}
Take the square root of 35200000000.
x=\frac{200000±40000\sqrt{22}}{2}
The opposite of -200000 is 200000.
x=\frac{40000\sqrt{22}+200000}{2}
Now solve the equation x=\frac{200000±40000\sqrt{22}}{2} when ± is plus. Add 200000 to 40000\sqrt{22}.
x=20000\sqrt{22}+100000
Divide 200000+40000\sqrt{22} by 2.
x=\frac{200000-40000\sqrt{22}}{2}
Now solve the equation x=\frac{200000±40000\sqrt{22}}{2} when ± is minus. Subtract 40000\sqrt{22} from 200000.
x=100000-20000\sqrt{22}
Divide 200000-40000\sqrt{22} by 2.
x=20000\sqrt{22}+100000 x=100000-20000\sqrt{22}
The equation is now solved.
x^{2}-2x\times 100000+12\times 10^{8}=0
Calculate 10 to the power of 5 and get 100000.
x^{2}-200000x+12\times 10^{8}=0
Multiply 2 and 100000 to get 200000.
x^{2}-200000x+12\times 100000000=0
Calculate 10 to the power of 8 and get 100000000.
x^{2}-200000x+1200000000=0
Multiply 12 and 100000000 to get 1200000000.
x^{2}-200000x=-1200000000
Subtract 1200000000 from both sides. Anything subtracted from zero gives its negation.
x^{2}-200000x+\left(-100000\right)^{2}=-1200000000+\left(-100000\right)^{2}
Divide -200000, the coefficient of the x term, by 2 to get -100000. Then add the square of -100000 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-200000x+10000000000=-1200000000+10000000000
Square -100000.
x^{2}-200000x+10000000000=8800000000
Add -1200000000 to 10000000000.
\left(x-100000\right)^{2}=8800000000
Factor x^{2}-200000x+10000000000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-100000\right)^{2}}=\sqrt{8800000000}
Take the square root of both sides of the equation.
x-100000=20000\sqrt{22} x-100000=-20000\sqrt{22}
Simplify.
x=20000\sqrt{22}+100000 x=100000-20000\sqrt{22}
Add 100000 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}