Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x-x=-8
Subtract x from both sides.
x^{2}-3x=-8
Combine -2x and -x to get -3x.
x^{2}-3x+8=0
Add 8 to both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 8}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-32}}{2}
Multiply -4 times 8.
x=\frac{-\left(-3\right)±\sqrt{-23}}{2}
Add 9 to -32.
x=\frac{-\left(-3\right)±\sqrt{23}i}{2}
Take the square root of -23.
x=\frac{3±\sqrt{23}i}{2}
The opposite of -3 is 3.
x=\frac{3+\sqrt{23}i}{2}
Now solve the equation x=\frac{3±\sqrt{23}i}{2} when ± is plus. Add 3 to i\sqrt{23}.
x=\frac{-\sqrt{23}i+3}{2}
Now solve the equation x=\frac{3±\sqrt{23}i}{2} when ± is minus. Subtract i\sqrt{23} from 3.
x=\frac{3+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+3}{2}
The equation is now solved.
x^{2}-2x-x=-8
Subtract x from both sides.
x^{2}-3x=-8
Combine -2x and -x to get -3x.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-8+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-8+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{23}{4}
Add -8 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{23}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{23}i}{2} x-\frac{3}{2}=-\frac{\sqrt{23}i}{2}
Simplify.
x=\frac{3+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+3}{2}
Add \frac{3}{2} to both sides of the equation.