Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+32=0.3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-2x+32-0.3=0.3-0.3
Subtract 0.3 from both sides of the equation.
x^{2}-2x+32-0.3=0
Subtracting 0.3 from itself leaves 0.
x^{2}-2x+31.7=0
Subtract 0.3 from 32.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 31.7}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 31.7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 31.7}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-126.8}}{2}
Multiply -4 times 31.7.
x=\frac{-\left(-2\right)±\sqrt{-122.8}}{2}
Add 4 to -126.8.
x=\frac{-\left(-2\right)±\frac{\sqrt{3070}i}{5}}{2}
Take the square root of -122.8.
x=\frac{2±\frac{\sqrt{3070}i}{5}}{2}
The opposite of -2 is 2.
x=\frac{\frac{\sqrt{3070}i}{5}+2}{2}
Now solve the equation x=\frac{2±\frac{\sqrt{3070}i}{5}}{2} when ± is plus. Add 2 to \frac{i\sqrt{3070}}{5}.
x=\frac{\sqrt{3070}i}{10}+1
Divide 2+\frac{i\sqrt{3070}}{5} by 2.
x=\frac{-\frac{\sqrt{3070}i}{5}+2}{2}
Now solve the equation x=\frac{2±\frac{\sqrt{3070}i}{5}}{2} when ± is minus. Subtract \frac{i\sqrt{3070}}{5} from 2.
x=-\frac{\sqrt{3070}i}{10}+1
Divide 2-\frac{i\sqrt{3070}}{5} by 2.
x=\frac{\sqrt{3070}i}{10}+1 x=-\frac{\sqrt{3070}i}{10}+1
The equation is now solved.
x^{2}-2x+32=0.3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-2x+32-32=0.3-32
Subtract 32 from both sides of the equation.
x^{2}-2x=0.3-32
Subtracting 32 from itself leaves 0.
x^{2}-2x=-31.7
Subtract 32 from 0.3.
x^{2}-2x+1=-31.7+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-30.7
Add -31.7 to 1.
\left(x-1\right)^{2}=-30.7
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-30.7}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{3070}i}{10} x-1=-\frac{\sqrt{3070}i}{10}
Simplify.
x=\frac{\sqrt{3070}i}{10}+1 x=-\frac{\sqrt{3070}i}{10}+1
Add 1 to both sides of the equation.