Solve for a (complex solution)
\left\{\begin{matrix}\\a=\frac{x}{2}\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=-3b\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=-\frac{x}{3}\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=2a\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=\frac{x}{2}\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=-3b\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=-\frac{x}{3}\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=2a\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-2ax-6ab=-3bx
Subtract 6ab from both sides.
-2ax-6ab=-3bx-x^{2}
Subtract x^{2} from both sides.
\left(-2x-6b\right)a=-3bx-x^{2}
Combine all terms containing a.
\left(-2x-6b\right)a=-x^{2}-3bx
The equation is in standard form.
\frac{\left(-2x-6b\right)a}{-2x-6b}=-\frac{x\left(x+3b\right)}{-2x-6b}
Divide both sides by -2x-6b.
a=-\frac{x\left(x+3b\right)}{-2x-6b}
Dividing by -2x-6b undoes the multiplication by -2x-6b.
a=\frac{x}{2}
Divide -x\left(3b+x\right) by -2x-6b.
6ab-3bx=x^{2}-2ax
Swap sides so that all variable terms are on the left hand side.
\left(6a-3x\right)b=x^{2}-2ax
Combine all terms containing b.
\frac{\left(6a-3x\right)b}{6a-3x}=\frac{x\left(x-2a\right)}{6a-3x}
Divide both sides by 6a-3x.
b=\frac{x\left(x-2a\right)}{6a-3x}
Dividing by 6a-3x undoes the multiplication by 6a-3x.
b=-\frac{x}{3}
Divide x\left(x-2a\right) by 6a-3x.
x^{2}-2ax-6ab=-3bx
Subtract 6ab from both sides.
-2ax-6ab=-3bx-x^{2}
Subtract x^{2} from both sides.
\left(-2x-6b\right)a=-3bx-x^{2}
Combine all terms containing a.
\left(-2x-6b\right)a=-x^{2}-3bx
The equation is in standard form.
\frac{\left(-2x-6b\right)a}{-2x-6b}=-\frac{x\left(x+3b\right)}{-2x-6b}
Divide both sides by -2x-6b.
a=-\frac{x\left(x+3b\right)}{-2x-6b}
Dividing by -2x-6b undoes the multiplication by -2x-6b.
a=\frac{x}{2}
Divide -x\left(3b+x\right) by -2x-6b.
6ab-3bx=x^{2}-2ax
Swap sides so that all variable terms are on the left hand side.
\left(6a-3x\right)b=x^{2}-2ax
Combine all terms containing b.
\frac{\left(6a-3x\right)b}{6a-3x}=\frac{x\left(x-2a\right)}{6a-3x}
Divide both sides by 6a-3x.
b=\frac{x\left(x-2a\right)}{6a-3x}
Dividing by 6a-3x undoes the multiplication by 6a-3x.
b=-\frac{x}{3}
Divide x\left(x-2a\right) by 6a-3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}