Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2-2x=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-2\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -2 for c in the quadratic formula.
x=\frac{2±2\sqrt{3}}{2}
Do the calculations.
x=\sqrt{3}+1 x=1-\sqrt{3}
Solve the equation x=\frac{2±2\sqrt{3}}{2} when ± is plus and when ± is minus.
\left(x-\left(\sqrt{3}+1\right)\right)\left(x-\left(1-\sqrt{3}\right)\right)>0
Rewrite the inequality by using the obtained solutions.
x-\left(\sqrt{3}+1\right)<0 x-\left(1-\sqrt{3}\right)<0
For the product to be positive, x-\left(\sqrt{3}+1\right) and x-\left(1-\sqrt{3}\right) have to be both negative or both positive. Consider the case when x-\left(\sqrt{3}+1\right) and x-\left(1-\sqrt{3}\right) are both negative.
x<1-\sqrt{3}
The solution satisfying both inequalities is x<1-\sqrt{3}.
x-\left(1-\sqrt{3}\right)>0 x-\left(\sqrt{3}+1\right)>0
Consider the case when x-\left(\sqrt{3}+1\right) and x-\left(1-\sqrt{3}\right) are both positive.
x>\sqrt{3}+1
The solution satisfying both inequalities is x>\sqrt{3}+1.
x<1-\sqrt{3}\text{; }x>\sqrt{3}+1
The final solution is the union of the obtained solutions.